64,259 research outputs found

    Gigahertz-Peaked Spectrum Radio Sources in Nearby Galaxies

    Get PDF
    There is now strong evidence that many low-luminosity AGNs (LLAGNs) contain accreting massive black holes and that the nuclear radio emission is dominated by parsec-scale jets launched by these black holes. Here, we present preliminary results on the 1.4 GHz to 667 GHz spectral shape of a well-defined sample of 16 LLAGNs. The LLAGNs have a falling spectrum at high GHz frequencies. Several also show a low-frequency turnover with a peak in the 1-20 GHz range. The results provide further support for jet dominance of the core radio emission. The LLAGNs show intriguing similarities with gigahertz-peaked spectrum (GPS) sources.Comment: 6 pages, to appear in ASP Conference series, 2002, Vol. 25

    Friction force microscopy : a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper

    Get PDF
    At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick–slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride

    4U 1626-67 as seen by Suzaku before and after the 2008 torque reversal

    Full text link
    Aims. The accretion-powered pulsar 4U 1626-67 experienced a new torque reversal at the beginning of 2008, after about 18 years of steadily spinning down. The main goal of the present work is to study this recent torque reversal that occurred in 2008 February. Methods. We present a spectral analysis of this source using two pointed observations performed by Suzaku in 2006 March and in 2010 September. Results. We confirm with Suzaku the presence of a strong emission-line complex centered on 1 keV, with the strongest line being the hydrogen-like Ne Ly-alpha at 1.025(3) keV. We were able to resolve this complex with up to seven emission lines. A dramatic increase of the intensity of the Ne Ly-alpha line after the 2008 torque reversal occurred, with the equivalent width of this line reaching almost the same value measured by ASCA in 1993. We also report on the detection of a cyclotron line feature centered at ~37 keV. In spite of the fact that an increase of the X-ray luminosity (0.5-100 keV) of a factor of ~2.8 occurred between these two observations, no significant change in the energy of the cyclotron line feature was observed. However, the intensity of the ~1 keV line complex increased by an overall factor of ~8. Conclusions. Our results favor a scenario in which the neutron star in 4U 1626-67 accretes material from a geometrically thin disk during both the spin-up and spin-down phases.Comment: 7 pages, 5 figures and 2 tables. Accepted in A&

    Conformal anomaly of Wilson surface observables - a field theoretical computation

    Full text link
    We make an exact field theoretical computation of the conformal anomaly for two-dimensional submanifold observables. By including a scalar field in the definition for the Wilson surface, as appropriate for a spontaneously broken A_1 theory, we get a conformal anomaly which is such that N times it is equal to the anomaly that was computed in hep-th/9901021 in the large N limit and which relied on the AdS-CFT correspondence. We also show how the spherical surface observable can be expressed as a conformal anomaly.Comment: 18 pages, V3: an `i' dropped in the Wilson surface, overall normalization and misprints corrected, V4: overall normalization factor corrected, references adde

    The Ah receptor: adaptive metabolism, ligand diversity, and the xenokine model

    Get PDF
    Author Posting. © American Chemical Society, 2020. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Chemical Research in Toxicology, 33(4), (2020): 860-879, doi:10.1021/acs.chemrestox.9b00476.The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins (“dioxins”), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.This review is dedicated in memory of the career of Alan Poland, one of the truly great minds in pharmacology and toxicology. This work was supported by the National Institutes of Health Grants R35-ES028377, T32-ES007015, P30-CA014520, P42-ES007381, and U01-ES1026127, The UW SciMed GRS Program, and The Morgridge Foundation. The authors would like to thank Catherine Stanley of UW Media Solutions for her artwork

    Evolution with hole doping of the electronic excitation spectrum in the cuprate superconductors

    Full text link
    The recent scanning tunnelling results of Alldredge et al on Bi-2212 and of Hanaguri et al on Na-CCOC are examined from the perspective of the BCS/BEC boson-fermion resonant crossover model for the mixed-valent HTSC cuprates. The model specifies the two energy scales controlling the development of HTSC behaviour and the dichotomy often now alluded to between nodal and antinodal phenomena in the HTSC cuprates. Indication is extracted from the data as to how the choice of the particular HTSC system sees these two basic energy scales (cursive-U, the local pair binding energy and, Delta-sc, the nodal BCS-like gap parameter) evolve with doping and change in degree of metallization of the structurally and electronically perturbed mixed-valent environment.Comment: 19 pages, 5 figure

    Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities

    Get PDF
    In this paper we consider instabilities of localised solutions in planar neural field firing rate models of Wilson-Cowan or Amari type. Importantly we show that angular perturbations can destabilise spatially localised solutions. For a scalar model with Heaviside firing rate function we calculate symmetric one-bump and ring solutions explicitly and use an Evans function approach to predict the point of instability and the shapes of the dominant growing modes. Our predictions are shown to be in excellent agreement with direct numerical simulations. Moreover, beyond the instability our simulations demonstrate the emergence of multi-bump and labyrinthine patterns. With the addition of spike-frequency adaptation, numerical simulations of the resulting vector model show that it is possible for structures without rotational symmetry, and in particular multi-bumps, to undergo an instability to a rotating wave. We use a general argument, valid for smooth firing rate functions, to establish the conditions necessary to generate such a rotational instability. Numerical continuation of the rotating wave is used to quantify the emergent angular velocity as a bifurcation parameter is varied. Wave stability is found via the numerical evaluation of an associated eigenvalue problem
    • …
    corecore