1,789 research outputs found

    Radio Astronomy

    Get PDF
    Contains research objectives and reports on three research projects.Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E)U. S. Navy (Office of Naval Research) under Contract N00014-67-A-0204-0009National Science Foundation (Grant GP-7046)National Aeronautics and Space Administration (Contract NSR-22-009-120)National Aeronautics and Space Administration (Grant NsG-419

    New Constraint on Open Cold-Dark-Matter Models

    Full text link
    We calculate the large-angle cross-correlation between the cosmic-microwave-background (CMB) temperature and the x-ray-background (XRB) intensity expected in an open Universe with cold dark matter (CDM) and a nearly scale-invariant spectrum of adiabatic density perturbations. Results are presented as a function of the nonrelativistic-matter density Ω0\Omega_0 (in units of the critical density) and the x-ray bias bxb_x (evaluated at a redshift z1z\simeq1 in evolving-bias models) for both an open Universe and a flat cosmological-constant Universe. Recent experimental upper limits to the amplitude of this cross-correlation provide a new constraint to the Ω0\Omega_0-bxb_x parameter space that open-CDM models (and the open-inflation models that produce them) must satisfy.Comment: 4 pages, LaTeX. Revised version contains additional figure that clarifies new constraint. (To appear in PRL.

    Radio Astronomy

    Get PDF
    Contains reports on five research projects.National Aeronautics and Space Administration (Grant NsG-419)National Science Foundation (Grant GP-7046)National Aeronautics and Space Administration (Contract NSR-22-009-120)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U, S. Air Force, under Contract DA 28-043-AMC-02536(E)U. S. Navy (Office of Naval Research) under Contract N00014-67-A-0204-000

    Hadronic light-by-light corrections to the muon g-2: the pion-pole contribution

    Full text link
    The correction to the muon anomalous magnetic moment from the pion-pole contribution to the hadronic light-by-light scattering is considered using a description of the pi0 - gamma* - gamma* transition form factor based on the large-Nc and short-distance properties of QCD. The resulting two-loop integrals are treated by first performing the angular integration analytically, using the method of Gegenbauer polynomials, followed by a numerical evaluation of the remaining two-dimensional integration over the moduli of the Euclidean loop momenta. The value obtained, a_{mu}(LbyL;pi0) = +5.8 (1.0) x 10^{-10}, disagrees with other recent calculations. In the case of the vector meson dominance form factor, the result obtained by following the same procedure reads a_{mu}(LbyL;pi0)_{VMD} = +5.6 x 10^{-10}, and differs only by its overall sign from the value obtained by previous authors. Inclusion of the eta and eta-prime poles gives a total value a_{mu}(LbyL;PS) = +8.3 (1.2) x 10^{-10} for the three pseudoscalar states. This result substantially reduces the difference between the experimental value of a_{mu} and its theoretical counterpart in the standard model.Comment: 27 pages, Latex, 3 figures. v2: version to be published in Phys. Rev. D, Note added and references updated (don't worry, sign has not changed

    Radio Astronomy

    Get PDF
    Contains reports on seven research projects.U. S. Navy (Office of Naval Research) under Contract N00014-67-A-0204-0009National Aeronautics and Space Administration (Grant NsG-419)National Science Foundation (Grant GP-7046)National Aeronautics and Space Administration (Contract NSR-22-009-120)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U.S. Air Force, Under Contract DA 28-043-AMC-02536(E

    Radio Astronomy

    Get PDF
    Contains reports on seven research projects.M. I. T. Sloan Fund for Basic ResearchNational Science Foundation (Grant GP-8415)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)National Aeronautics and Space Administration (Grant NGL 22-009-016

    Plasma Magnetohydrodynamics and Energy Conversion

    Get PDF
    Contains reports on eight research projects.National Science Foundation (Grant G-24073)United States Air Force, Aeronautical Systems Division, Aeronautical Accessories Laboratory, Wright-Patterson Air Force Base (Contract AF33(616)-7624)United States Air Force, Office of Scientific Research of the Office of Aerospace Research (Research Grant No. 62-308

    CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy

    Get PDF
    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130^{130}Te. With 741 kg of TeO2_2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6×10261.6\times 10^{26} y at 1σ1\sigma (9.5×10259.5\times10^{25} y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130^{130}Te and possibly other double beta decay candidate nuclei.Comment: Submitted to the Proceedings of TAUP 2013 Conferenc

    Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    Get PDF
    Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0nubb decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0nubb experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them.Comment: 22 pages, 15 figures, submitted to EPJ
    corecore