2,600 research outputs found

    Non-isothermal flow of a thin film of fluid with temperature-dependent viscosity on a stationary horizontal cylinder

    Get PDF
    A comprehensive description is obtained of the two-dimensional steady gravity-driven flow with prescribed volume flux of a thin film of Newtonian fluid with temperature-dependent viscosity on a stationary horizontal cylinder. When the cylinder is uniformly hotter than the surrounding atmosphere (positive thermoviscosity), the effect of increasing the heat transfer to the surrounding atmosphere at the free surface is to increase the average viscosity and hence reduce the average velocity within the film, with the net effect that the film thickness (and hence the total fluid load on the cylinder) is increased to maintain the fixed volume flux of fluid. When the cylinder is uniformly colder than the surrounding atmosphere (negative thermoviscosity), the opposite occurs. Increasing the heat transfer at the free surface from weak to strong changes the film thickness everywhere (and hence the load, but not the temperature or the velocity) by a constant factor which depends only on the specific viscosity model considered. The effect of increasing the thermoviscosity is always to increase the film thickness and hence the load. In the limit of strong positive thermoviscosity, the velocity is small and uniform outside a narrow boundary layer near the cylinder leading to a large film thickness, while in the limit of strong negative thermoviscosity, the velocity increases from zero at the cylinder to a large value at the free surface leading to a small film thickness

    Chiral exponents in O(N) x O(m) spin models at O(1/N^2)

    Full text link
    The critical exponents corresponding to chirality are computed at O(1/N^2) in d-dimensions at the stable chiral fixed point of a scalar field theory with an O(N) x O(m) symmetry. Pade-Borel estimates for the exponents are given in three dimensions for the Landau-Ginzburg-Wilson model at m = 2.Comment: 8 latex page

    A topologically unique alternating {Co III 3 Gd III 3 } magnetocaloric ring

    Get PDF
    The adiabatic temperature change of the star-shaped {CoIII3GdIII3} magnetocaloric ring is enhanced via topological control over the assembly process, by using a pre-formed {CoII(H6L)} building block that undergoes oxidation to CoIII, successfully separating the GdIII ions

    Calculation of the emission power distribution of microstructured OLEDs using the reciprocity theorem

    Get PDF
    S. Zhang, E.R. Martins, G.A. Turnbull and I.D.W. Samuel are grateful to the Scottish Universities Physics Alliance (SUPA) and the Engineering and Physical Sciences Research Council (EPSRC) for financial support.Integrating photonic microstructures into organic light-emitting diodes (OLEDs) has been a widely used strategy to improve their light out-coupling efficiency. However, there is still a need for optical modelling methods which quantitatively characterise the spatial emission pattern of microstructured OLEDs. In this paper, we demonstrate such rigorous calculation using the reciprocity theorem. The calculation of the emission intensity at each direction in the far field can be simplified into only two simple calculations of an incident plane wave propagating from the far field into a single cell of the periodic structure. The emission from microstructured OLED devices with three different grating periods was calculated as a test of the approach, and the calculated results were in good agreement with experiment. This optical modelling method is a useful calculation tool to investigate and control the spatial emission pattern of microstructured OLEDs.PostprintPeer reviewe

    Optimized teleportation in Gaussian noisy channels

    Full text link
    We address continuous variable quantum teleportation in Gaussian quantum noisy channels, either thermal or squeezed-thermal. We first study the propagation of twin-beam and evaluate a threshold for its separability. We find that the threshold for purely thermal channels is always larger than for squeezed-thermal ones. On the other hand, we show that squeezing the channel improves teleportation of squeezed states and, in particular, we find the class of squeezed states that are better teleported in a given noisy channel. Finally, we find regimes where optimized teleportation of squeezed states improves amplitude-modulated communication in comparison with direct transmission

    The Non-Trivial Effective Potential of the `Trivial' lambda Phi^4 Theory: A Lattice Test

    Full text link
    The strong evidence for the `triviality' of (lambda Phi^4)_4 theory is not incompatible with spontaneous symmetry breaking. Indeed, for a `trivial' theory the effective potential should be given exactly by the classical potential plus the free-field zero-point energy of the shifted field; i.e., by the one-loop effective potential. When this is renormalized in a simple, but nonperturbative way, one finds, self-consistently, that the shifted field does become non-interacting in the continuum limit. For a classically scale-invariant (CSI) lambda Phi^4 theory one finds m_h^2 = 8 pi^2 v^2, predicting a 2.2 TeV Higgs boson. Here we extend our earlier work in three ways: (i) we discuss the analogy with the hard-sphere Bose gas; (ii) we extend the analysis from the CSI case to the general case; and (iii) we propose a test of the predicted shape of the effective potential that could be tested in a lattice simulation.Comment: 22 pages, LaTeX, DE-FG05-92ER40717-

    Crossover exponent in O(N) phi^4 theory at O(1/N^2)

    Full text link
    The critical exponent phi_c, derived from the anomalous dimension of the bilinear operator responsible for crossover behaviour in O(N) phi^4 theory, is calculated at O(1/N^2) in a large N expansion in arbitrary space-time dimension d = 4 - 2 epsilon. Its epsilon expansion agrees with the known O(epsilon^4) perturbative expansion and new information on the structure of the five loop exponent is provided. Estimates of phi_c and the related crossover exponents beta_c and gamma_c, using Pade-Borel resummation, are provided for a range of N in three dimensions.Comment: 8 latex page

    Wilson function transforms related to Racah coefficients

    Full text link
    The irreducible ∗*-representations of the Lie algebra su(1,1)su(1,1) consist of discrete series representations, principal unitary series and complementary series. We calculate Racah coefficients for tensor product representations that consist of at least two discrete series representations. We use the explicit expressions for the Clebsch-Gordan coefficients as hypergeometric functions to find explicit expressions for the Racah coefficients. The Racah coefficients are Wilson polynomials and Wilson functions. This leads to natural interpretations of the Wilson function transforms. As an application several sum and integral identities are obtained involving Wilson polynomials and Wilson functions. We also compute Racah coefficients for U_q(\su(1,1)), which turn out to be Askey-Wilson functions and Askey-Wilson polynomials.Comment: 48 page
    • …
    corecore