39 research outputs found

    In situ imaging of vortices in Bose-Einstein condensates

    Get PDF
    Laboratory observations of vortex dynamics in Bose-Einstein condensates (BECs) are essential for determination of many aspects of superfluid dynamics in these systems. We present a novel application of dark-field imaging that enables \texttt{\it in situ} detection of two-dimensional vortex distributions in single-component BECs, a step towards real-time measurements of complex two-dimensional vortex dynamics within a single BEC. By rotating a 87^{87}Rb BEC in a magnetic trap, we generate a triangular lattice of vortex cores in the BEC, with core diameters on the order of 400 nm and cores separated by approximately 9 μ\mum. We have experimentally confirmed that the positions of the vortex cores can be determined without the need for ballistic expansion of the BEC.Comment: 5 pages, 4 figure

    Self-bound droplets of light with orbital angular momentum

    Get PDF
    Systems with competing attractive and repulsive interactions have a tendency to condense into droplets. This is the case for water in a sink, liquid helium and dipolar atomic gases. Here, we consider a photon fluid which is formed in the transverse plane of a monochromatic laser beam propagating in an attractive (focusing) nonlocal nonlinear medium. In this setting we demonstrate the formation of the optical analogue of matter wave droplets, and study their properties. The system we consider admits droplets that carry orbital angular momentum. We find bound states possessing liquid-like properties, such as bulk pressure and compressibility. Interestingly, these droplets of light, as opposed to optical vortices, form due to the competition between long-range s-wave (monopole) and d-wave (quadrupole) interactions as well as diffraction.Comment: 11 pages, 6 figures. General improvements and restructuring, supplementary material now part of main tex

    Generation of high-winding-number superfluid circulation in Bose-Einstein condensates

    Get PDF
    We experimentally and numerically demonstrate a method to generate multiply quantized superfluid circulation about an obstacle in highly oblate Bose-Einstein condensates (BECs). We experimentally achieve pinned superflow with winding numbers as high as 11, which persists for at least 4 s. Our method conceptually involves spiraling a blue-detuned laser beam, around and towards the center of the BEC, and is experimentally implemented by moving the BEC in a spiral trajectory around a stationary laser beam. This optical potential serves first as a repulsive stirrer to initiate superflow, and then as a pinning potential to transport the superfluid circulation within the BEC. The spiral technique can be used either to generate a high-winding-number persistent current, or for controlled placement of a cluster of singly quantized vortices of the same circulation. Thus, the technique may serve as a building block in experimental architectures to create on-demand vortex distributions in BECs

    Generation of high-winding-number superfluid circulation in Bose-Einstein condensates

    Get PDF
    We experimentally and numerically demonstrate a method to generate multiply quantized superfluid circulation about an obstacle in highly oblate Bose-Einstein condensates (BECs). We experimentally achieve pinned superflow with winding numbers as high as 11, which persists for at least 4 s. Our method conceptually involves spiraling a blue-detuned laser beam, around and towards the center of the BEC, and is experimentally implemented by moving the BEC in a spiral trajectory around a stationary laser beam. This optical potential serves first as a repulsive stirrer to initiate superflow, and then as a pinning potential to transport the superfluid circulation within the BEC. The spiral technique can be used either to generate a high-winding-number persistent current, or for controlled placement of a cluster of singly quantized vortices of the same circulation. Thus, the technique may serve as a building block in experimental architectures to create on-demand vortex distributions in BECs

    Observation of magnetic Feshbach resonances between Cs and 173Yb

    Get PDF
    We report the observation of magnetic Feshbach resonances between 173Yb and 133Cs. In a mixture of Cs atoms prepared in the (f=3,mf=3) state and unpolarized fermionic 173Yb, we observe resonant atom loss due to two sets of magnetic Feshbach resonances around 622 and 702 G. Resonances for individual Yb nuclear spin components mi,Yb are split by its interaction with the Cs electronic spin, which also provides the main coupling mechanism for the observed resonances. The observed splittings and relative resonance strengths are in good agreement with theoretical predictions from coupled-channel calculations

    Integrative Taxonomy for Continental-Scale Terrestrial Insect Observations

    Get PDF
    Although 21st century ecology uses unprecedented technology at the largest spatio-temporal scales in history, the data remain reliant on sound taxonomic practices that derive from 18th century science. The importance of accurate species identifications has been assessed repeatedly and in instances where inappropriate assignments have been made there have been costly consequences. The National Ecological Observatory Network (NEON) will use a standardized system based upon an integrative taxonomic foundation to conduct observations of the focal terrestrial insect taxa, ground beetles and mosquitoes, at the continental scale for a 30 year monitoring program. The use of molecular data for continental-scale, multi-decadal research conducted by a geographically widely distributed set of researchers has not been evaluated until this point. The current paper addresses the development of a reference library for verifying species identifications at NEON and the key ways in which this resource will enhance a variety of user communities

    Delayed Onset of a Daytime Nap Facilitates Retention of Declarative Memory

    Get PDF
    BACKGROUND: Learning followed by a period of sleep, even as little as a nap, promotes memory consolidation. It is now generally recognized that sleep facilitates the stabilization of information acquired prior to sleep. However, the temporal nature of the effect of sleep on retention of declarative memory is yet to be understood. We examined the impact of a delayed nap onset on the recognition of neutral pictorial stimuli with an added spatial component. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed an initial study session involving 150 neutral pictures of people, places, and objects. Immediately following the picture presentation, participants were asked to make recognition judgments on a subset of "old", previously seen, pictures versus intermixed "new" pictures. Participants were then divided into one of four groups who either took a 90-minute nap immediately, 2 hours, or 4 hours after learning, or remained awake for the duration of the experiment. 6 hours after initial learning, participants were again tested on the remaining "old" pictures, with "new" pictures intermixed. CONCLUSIONS/SIGNIFICANCE: Interestingly, we found a stabilizing benefit of sleep on the memory trace reflected as a significant negative correlation between the average time elapsed before napping and decline in performance from test to retest (p = .001). We found a significant interaction between the groups and their performance from test to retest (p = .010), with the 4-hour delay group performing significantly better than both those who slept immediately and those who remained awake (p = .044, p = .010, respectively). Analysis of sleep data revealed a significant positive correlation between amount of slow wave sleep (SWS) achieved and length of the delay before sleep onset (p = .048). The findings add to the understanding of memory processing in humans, suggesting that factors such as waking processing and homeostatic increases in need for sleep over time modulate the importance of sleep to consolidation of neutral declarative memories

    Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model

    Get PDF
    The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Observation of Photon Droplets and Their Dynamics

    Get PDF
    We present experimental evidence of photon droplets in an attractive (focusing) nonlocal nonlinear medium. Photon droplets are self-bound, finite-sized states of light that are robust to size and shape perturbations due to a balance of competing attractive and repulsive forces. It has recently been shown theoretically, via a multipole expansion of the nonlocal nonlinearity, that the self-bound state arises due to competition between the s-wave and d-wave nonlinear terms, together with diffraction. The theoretical photon droplet framework encompasses both a soliton-like stationary ground state and the non-soliton-like dynamics that ensue when the system is displaced from equilibrium, i.e. driven into an excited state. We present numerics and experiments supporting the existence of these photon droplet states and measurements of the dynamical evolution of the photon droplet orbital angular momentum.Comment: 6 pages (inc. supplemental), 7 figure
    corecore