98 research outputs found

    The Role of WT1 in Embryonic Development and Normal Organ Homeostasis.

    Get PDF
    The Wilms' tumor suppressor gene 1 (Wt1) is critically involved in a number of developmental processes in vertebrates, including cell differentiation, control of the epithelial/mesenchymal phenotype, proliferation, and apoptosis. Wt1 proteins act as transcriptional and post-transcriptional regulators, in mRNA splicing and in protein-protein interactions. Furthermore, Wt1 is involved in adult tissue homeostasis, kidney function, and cancer. For these reasons, Wt1 function has been extensively studied in a number of animal models to establish its spatiotemporal expression pattern and the developmental fate of the cells expressing this gene. In this chapter, we review the developmental anatomy of Wt1, collecting information about its dynamic expression in mesothelium, kidney, gonads, cardiovascular system, spleen, nervous system, lung, and liver. We also describe the adult expression of Wt1 in kidney podocytes, gonads, mesothelia, visceral adipose tissue, and a small fraction of bone marrow cells. We have reviewed the available animal models for Wt1-expressing cell lineage analysis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing, based on constitutive or inducible Cre recombinase expression under control of a Wt1 promoter. Finally we provide a number of laboratory protocols to be used with these animal models in order to assess reporter expression

    Tools and Techniques for Wt1-Based Lineage Tracing.

    Get PDF
    The spatiotemporal expression pattern of Wt1 has been extensively studied in a number of animal models to establish its function and the developmental fate of the cells expressing this gene. In this chapter, we review the available animal models for Wt1-expressing cell lineage analysis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing. We describe the presently used constitutive or inducible genetic lineage tracing approaches based on the Cre/loxP system utilizing Cre recombinase expression under control of a Wt1 promoter.To make these systems accessible, we provide laboratory protocols that include dissection and processing of the tissues for immunofluorescence and histopathological analysis of the lineage-labeled Wt1-derived cells within the embryo/tissue context

    Autologous Cells for Kidney Bioengineering.

    Get PDF
    Worldwide, increasing numbers of patients are developing end-stage renal disease, and at present, the only treatment options are dialysis or kidney transplantation. Dialysis is associated with increased morbidity and mortality, poor life quality and high economic costs. Transplantation is by far the better option, but there are insufficient numbers of donor kidneys available. Therefore, there is an urgent need to explore alternative approaches. In this review, we discuss how this problem could potentially be addressed by using autologous cells and appropriate scaffolds to develop 'bioengineered' kidneys for transplantation. In particular, we will highlight recent breakthroughs in pluripotent stem cell biology that have led to the development of autologous renal progenitor cells capable of differentiating to all renal cell types and will discuss how these cells could be combined with appropriate scaffolds to develop a bioengineered kidney

    Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy

    Get PDF
    Screening cells for their differentiation potential requires a combination of tissue culture models and imaging methods that allow for long-term tracking of the location and function of cells. Embryonic kidney re-aggregation in vitro assays have been established which allow for the monitoring of organotypic cell behaviour in re-aggregated and chimeric renal organoids. However, evaluation of cell integration is hampered by the high photonic load of standard fluorescence microscopy which poses challenges for imaging three-dimensional systems in real-time over a time course. Therefore, we employed light sheet microscopy, a technique that vastly reduces photobleaching and phototoxic effects. We have also developed a new method for culturing the re-aggregates which involves immersed culture, generating organoids which more closely reflect development in vivo. To facilitate imaging from various angles, we embedded the organoids in a freely rotatable hydrogel cylinder. Endpoint fixing and staining were performed to provide additional biomolecular information. We succeeded in imaging labelled cells within re-aggregated kidney organoids over 15 hours and tracking their fate while simultaneously monitoring the development of organotypic morphological structures. Our results show that Wt1-expressing embryonic kidney cells obtained from transgenic mice could integrate into re-aggregated chimeric kidney organoids and contribute to developing nephrons. Furthermore, the nascent proximal tubules that formed in the re-aggregated tissues using the new culture method displayed secretory function, as evidenced by their ability to secrete an organic anion mimic into the tubular lumen

    Stem Cells Derived from Neonatal Mouse Kidney Generate Functional Proximal Tubule-Like Cells and Integrate into Developing Nephrons In Vitro

    Get PDF
    We have recently shown that kidney-derived stem cells (KSCs) isolated from the mouse newborn kidney differentiate into a range of kidney-specific cell types. However, the functionality and integration capacity of these mouse KSCs remain unknown. Therefore, the main objectives of this study were (1) to determine if proximal tubule-like cells, generated in vitro from KSCs, displayed absorptive function typical of proximal tubule cells in vivo, and (2) to establish whether the ability of KSCs to integrate into developing nephrons was comparable with that of metanephric mesenchyme (MM), a transient population of progenitor cells that gives rise to the nephrons during kidney organogenesis. We found that proximal tubule-like cells generated in vitro from mouse KSCs displayed megalin-dependent absorptive function. Subsequently, we used a chimeric kidney rudiment culture system to show that the KSCs could generate proximal tubule cells and podocytes that were appropriately located within the developing nephrons. Finally, we compared the ability of KSCs to integrate into developing kidneys ex vivo with that of metanephric mesenchyme cells. We found that KSCs integrated into nascent nephrons to a similar extent as metanephric mesenchyme cells while both were excluded from ureteric bud branches. Our analysis of the behavior of the two cell types shows that some, but not all KSC characteristics are similar to those of the MM

    Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum.

    Get PDF
    The human omentum has been long regarded as a healing patch, used by surgeons for its ability to immunomodulate, repair and vascularise injured tissues. A major component of the omentum are mesothelial cells, which display some of the characteristics of mesenchymal stem/stromal cells. For instance, lineage tracing studies have shown that mesothelial cells give rise to adipocytes and vascular smooth muscle cells, and human and rat mesothelial cells have been shown to differentiate into osteoblast- and adipocyte-like cells in vitro, indicating that they have considerable plasticity. However, so far, long-term cultures of mesothelial cells have not been successfully established due to early senescence. Here, we demonstrate that mesothelial cells isolated from the mouse omentum could be cultured for more than 30 passages. While epithelial markers were downregulated over passages in the mesothelial cells, their mesenchymal profile remained unchanged. Early passage mesothelial cells displayed clonogenicitiy, expressed several stem cell markers, and up to passage 5 and 13, respectively, could differentiate along the adipogenic and osteogenic lineages, demonstrating stem/progenitor characteristics and differentiation potential

    Extracellular Vesicles from Human Umbilical Cord-Derived MSCs Affect Vessel Formation In Vitro and Promote VEGFR2-Mediated cell Survival

    Get PDF
    Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have emerged as novel tools in regenerative medicine. Angiogenesis modulation is widely studied for the treatment of ischaemic diseases, wound healing, and tissue regeneration. Here, we have shown that EVs from human umbilical cord-derived MSCs can affect VEGFR2 signalling, a master regulator of angiogenesis homeostasis, via altering the phosphorylation of AKT. This translates into an inhibition of apoptosis, promoting exclusively cell survival, but not proliferation, in human microvascular endothelial cells. Interestingly, when comparing EVs from normoxic cells to those obtained from hypoxia (1% O2) preconditioned cells, hypoxia-derived EVs appear to have a slightly enhanced effect. Furthermore, when studied in a longer term endothelial-fibroblast co-culture angiogenesis model in vitro, both EV populations demonstrated a positive effect on vessel formation, evidenced by increased vessel networks with tubes of significantly larger diameters. Our data reveals that EVs selectively target components of the angiogenic pathway, promoting VEGFR2-mediated cell survival via enhancement of AKT activation. Our data show that EVs are able to enhance specific components of the VEGF signalling pathway and may have therapeutic potential to support endothelial cell survival.</jats:p

    Multicolour In Vivo Bioluminescence Imaging Using a NanoLuc‐Based BRET Reporter in Combination with Firefly Luciferase

    Get PDF
    The ability to track the biodistribution and fate of multiple cell populations administered to rodents has the potential to facilitate the understanding of biological processes in a range of fields including regenerative medicine, oncology, and host/pathogen interactions. Bioluminescence imaging is an important tool for achieving this goal, but current protocols rely on systems that have poor sensitivity or require spectral decomposition. Here, we show that a bioluminescence resonance energy transfer reporter (BRET) based on NanoLuc and LSSmOrange in combination with firefly luciferase enables the unambiguous discrimination of two cell populations in vivo with high sensitivity. We insert each of these reporter genes into cells using lentiviral vectors and demonstrate the ability to monitor the cells’ biodistribution under a wide range of administration conditions, including the venous or arterial route, and in different tissues including the brain, liver, kidneys, and tumours. Our protocol allows for the imaging of two cell populations in the same imaging session, facilitating the overlay of the signals and the identification of anatomical positions where they colocalise. Finally, we provide a method for postmortem confirmation of the presence of each cell population in excised organs

    Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease

    Get PDF
    AbstractThe incidence of end stage kidney disease is rising annually and it is now a global public health problem. Current treatment options are dialysis or renal transplantation, which apart from their significant drawbacks in terms of increased morbidity and mortality, are placing an increasing economic burden on society. Cell-based Regenerative Medicine Therapies (RMTs) have shown great promise in rodent models of kidney disease, but clinical translation is hampered due to the lack of adequate safety and efficacy data. Furthermore, the mechanisms whereby the cell-based RMTs ameliorate injury are ill-defined. For instance, it is not always clear if the cells directly replace damaged renal tissue, or whether paracrine effects are more important. Knowledge of the mechanisms responsible for the beneficial effects of cell therapies is crucial because it could lead to the development of safer and more effective RMTs in the future. To address these questions, novel in vivo imaging strategies are needed to monitor the biodistribution of cell-based RMTs and evaluate their beneficial effects on host tissues and organs, as well as any potential adverse effects. In this review we will discuss how state-of-the-art imaging modalities, including bioluminescence, magnetic resonance, nuclear imaging, ultrasound and an emerging imaging technology called multispectral optoacoustic tomography, can be used in combination with various imaging probes to track the fate and biodistribution of cell-based RMTs in rodent models of kidney disease, and evaluate their effect on renal function
    • 

    corecore