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Abstract 

The incidence of end stage kidney disease is rising annually and it is now a global public health 

problem. Current treatment options are dialysis or renal transplantation, which apart from their 

significant drawbacks in terms of increased morbidity and mortality, are placing an increasing 

economic burden on society. Cell-based Regenerative Medicine Therapies (RMTs) have shown great 

promise in rodent models of kidney disease, but clinical translation is hampered due to the lack of 

adequate safety and efficacy data. Furthermore, the mechanisms whereby the cell-based RMTs 

ameliorate injury are ill-defined. For instance, it is not always clear if the cells directly replace 

damaged renal tissue, or whether paracrine effects are more important. Knowledge of the 

mechanisms responsible for the beneficial effects of cell therapies is crucial because it could lead to 

the development of safer and more effective RMTs in the future. To address these questions, novel 

in vivo imaging strategies are needed to monitor the biodistribution of cell-based RMTs and evaluate 

their beneficial effects on host tissues and organs, as well as any potential adverse effects. In this 

review we will discuss how state-of-the-art imaging modalities, including bioluminescence, magnetic 

resonance, nuclear imaging, ultrasound and an emerging imaging technology called multispectral 

optoacoustic tomography, can be used in combination with various imaging probes to track the fate 

and biodistribution of cell-based RMTs in rodent models of kidney disease, and evaluate their effect 

on renal function. 

 

Key words: stem cells; preclinical imaging; multispectral optoacoustic tomography; cell tracking; 
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1. Introduction 

Cell-based regenerative medicine therapies (RMTs) are showing great promise in rodent models of 

kidney disease (Bussolati and Camussi, 2015; Murray and Woolf, 2014) but clinical translation of 

these novel therapies is currently hampered because accurate safety and efficacy data from the 

rodent studies are lacking. These data are essential for determining the risk:benefit ratio of the 

RMTs in order to judge whether they would be appropriate for use in man.  A difficulty in assessing 

cell-based RMTs is that the standard ‘absorption, distribution, metabolism and excretion’ (ADME) 

and pharmacokinetic (PK) testing that are used to assess the disposition of pharmacological 

compounds are not directly applicable. This is mainly because, unlike pharmacological compounds, 

cellular therapeutics can persist and even proliferate in the recipient over the long-term, and also 

have the potential to migrate to other tissues where they could cause adverse effects (Heslop et al., 

2015). Nevertheless, the general scientific principles in the fields of pharmacology and toxicology 

should be considered and applied where possible. The application of these principles is facilitated by 

recent progress in the field of in vivo imaging, which is making it possible to visualise administered 

stem cells, track their fate and ‘see’ the effects they have on host tissues and organs (James and 

Gambhir, 2012; Meleshina et al., 2015; Wang and Yan, 2008), thus enabling the behaviour of 

administered cells to be evaluated with a degree of accuracy that until now, has only been possible 

for drugs. For instance, using the appropriate imaging agent/imaging modality combination, it is 

possible to determine how an administered cell population is distributed within each body 

compartment, thus defining the maximum tissue distribution (equivalent to ‘Cmax’ for administered 

drugs). Then by measuring the distribution kinetics of the cells, it is possible to define the complete 

spatiotemporal profile of distribution (equivalent to ‘pharmacokinetics’ (PK) for administered drugs) 

and the rate of accumulation and elimination from target and non-target tissues. Simultaneously, it 

is also possible to monitor the biological effects on host tissues and organs, thus defining the 

complete spatiotemporal profile of responses (equivalent to ‘pharmacodynamics’ (PD) for 

administered drugs). By co-registering and correlating the kinetics and dynamics, it should be 
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possible to define the efficacy and safety for each cell therapy. In this review, we will discuss how in 

vivo imaging technologies can be used to evaluate cell-based RMTs in rodent models of kidney 

disease, with particular focus on the biodistribution of cell-based RMTs and their effect on renal 

function. 

 

2. Rodent models of kidney disease 

Most studies investigating the potential of cell-based RMTs to treat kidney disease have used rodent 

models of ischaemia reperfusion injury (IRI) (Donizetti-Oliveira et al., 2012; Feng et al., 2016) or 

various drug-induced injury models, such as cisplatin, adriamycin, aristolochic acid  (Bruno et al., 

2012; Li et al., 2012; Qi and Wu, 2013; Ronconi et al., 2009) and the glycerol model of induced 

rhabdomyolysis (Angelotti et al., 2012; Geng et al., 2014). All of these models are clinically relevant. 

For instance, IRI, which has been proposed to be the optimal model for evaluating cell-based RMTs 

(Wang et al., 2012), represents the type of tubular injury incurred by renal allografts during 

transplantation (Asderakis et al., 2001), and by the kidneys of patients undergoing cardiopulmonary 

bypass surgery (Okusa et al., 2009). Clinical trials have already been undertaken to assess the 

potential of mesenchymal stem/stromal cells (MSCs) to ameliorate kidney disease in cardiac surgery 

patients, with both positive and negative outcomes being reported (NCT00733876; 

NCT01602328)(Gooch and Westenfelder, 2016). A clinical trial is also currently underway to establish 

the safety and feasibility of administering MSCs to cancer patients receiving cisplatin 

(NCT01275612), an anti-cancer drug that causes acute tubular injury, which in 20% of patients, 

progresses to chronic kidney disease (Inai et al., 2013). Likewise, the safety and efficacy of bone 

marrow-derived mononuclear cells are being assessed in patients with focal segmental 

glomerulosclerosis (NCT02693366), a disease that resembles adriamycin-induced nephropathy in 

rodents (Scarfe et al., 2015). Cell-based therapies for treating aristolochic acid and rhabdomyolysis-

induced nephropathy have only been tested in rodent models so far, but both models are good 
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representations of the tubulo-interstitial injury that can occur in human patients following ingestion 

of aristolochic acid (Yang et al., 2014) or crush injury (Gibney et al., 2014), respectively.  

 

A common problem with all rodent kidney injury models is that the extent of injury incurred can vary 

considerably between individuals within the same cohort, making it difficult to accurately assess the 

efficacy of the cell therapies. Some studies address this by using large numbers of animals in the 

treatment and control groups, and culling animals at various time points (Angelotti et al., 2012; 

Ronconi et al., 2009). However, an alternative approach is to use methodologies that enable the 

same animal to be evaluated over time, so that the extent of injury and therapeutic response can be 

monitored in each individual animal. The key advantage of undertaking such longitudinal 

assessments is that correlated data are generated, thus increasing the power of the statistical tests, 

which in compliance with the principles of ‘Replacement, Refinement and Reduction’ (the ‘3Rs’), 

enables the number of animals in these type of experiments to be reduced.  

 

3. Cell-based regenerative medicine therapies 

The most common cell types used as RMTs include MSCs from bone marrow (Qi and Wu, 2013) and 

adipose tissue (Donizetti-Oliveira et al., 2012), kidney-derived progenitor cells (Ronconi et al., 2009), 

renal progenitors derived from embryonic stem cells or induced pluripotent stem cells (iPSCs) 

(Toyohara et al., 2015), or heterogeneous populations such as adipose-derived regenerative cells 

(Feng et al., 2010) or bone marrow-derived mononuclear cells (Semedo et al., 2010). MSCs, adipose-

derived regenerative cells and bone marrow-derived mononuclear cells ameliorate renal injury via 

paracrine factors, whereas kidney-derived progenitor cells have been reported to engraft in the 

kidney and generate specialised renal cells (Angelotti et al., 2012; Bussolati et al., 2005; Ronconi et 

al., 2009). iPSC-derived renal progenitors can also engraft in the kidney and generate renal cells 

(Imberti et al., 2015; Toyohara et al., 2015), though their therapeutic effects appear to be mediated 
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by paracrine mechanisms (Toyohara et al., 2015). As an alternative to administering cells, several 

studies have investigated the therapeutic potential of cell-derived extracellular vesicles, which in 

many cases, have been shown to be as efficacious as the cells themselves (Bruno et al., 2009). It is 

anticipated that extracellular vesicles would be less hazardous than cells as they would not form 

tumours and would present a low risk of forming emboli. As we will discuss in section 5, it is crucial 

to monitor the in vivo biodistribution of cellular therapeutics in order to assess their safety, efficacy 

and mechanisms of action. There are two broad methods for labelling cells so that they can be 

tracked following their administration:  introducing a genetic reporter, or labelling the cells with a 

nanoprobe or small molecules, such as near infrared (NIR) dyes or fluorescent proteins.  For adipose-

derived regenerative cells and bone marrow-derived mononuclear cells, which are heterogeneous 

populations of autologous cells that are used at the point-of-care, it is not possible to introduce 

genetic reporters, because this would require culturing the cells in vitro, a process which would be 

expected to alter their composition and phenotype. MSCs, iPSCs and kidney-derived progenitor cells 

on the other hand, are routinely expanded in vitro, and so for these cell types, there is the 

opportunity to introduce reporters. The biodistribution of extracellular vesicles can be monitored 

using both genetic reporters and NIR dyes (Grange et al., 2014b; Lai et al., 2014). 

 

4. Imaging agents and technologies  

4.1. Imaging agents for cell tracking 

Genetic reporters are excellent tools for tracking cell fate and biodistribution in small animals. When 

expressed under the control of a constitutive promoter, reporter genes can be used for long-term 

biodistribution analysis, as the signal is not depleted when the cells proliferate. Constitutively 

expressed reporters also indicate whether the cells are viable, because expression is rapidly lost if 

the cells die. When expressed under the control of a cell-type specific promoter, reporters can be 

used to monitor cell fate and/or function by indicating the differentiation status of administered 
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cells. The most commonly used reporter for cell tracking studies is firefly luciferase, an enzyme that 

emits light in the presence of D-luciferin, oxygen and ATP and can be detected using 

bioluminescence imaging. Other luciferases include the sea pansy (Renilla reniformis) and marine 

cope pod luciferases (Gaussia princeps), but compared to firefly luciferase, the Renilla is less intense, 

and the Gaussia has a very short emission half-life (James and Gambhir, 2012). In addition to 

bioluminescence imaging, genetic reporters can also be used for imaging with other modalities; for 

instance, NIR fluorescent protein reporters can be used for fluorescence (Lu et al., 2013) and 

photoacoustic imaging (Jathoul et al., 2015), and cells expressing nuclear imaging reporters, such as 

the human norepinephrine transporter, can be imaged with single photon emission computed 

tomography (SPECT) following administration of an appropriate substrate (e.g., 123I-MIBG; meta-

iodo-benzylguanine)(Moroz et al., 2007). There has also been some interest in using reporter genes 

for magnetic resonance imaging (MRI) (Velde et al., 2013), but the low sensitivity of MRI reporters 

means they have limited use in cell tracking applications (Pereira et al., 2016a; Pereira et al., 2015; 

Pereira et al., 2016b). 

 

In addition to genetic reporters, nanoparticles and small molecules such as NIR dyes are also useful 

tools for tracking the biodistribution of administered cells (Taylor et al., 2012).  Unlike the reporter 

genes, they cannot be used to monitor cell fate, and due to them being depleted by 50% with each 

cell division, they are not suitable for tracking proliferating cells in the long-term. Furthermore, if the 

labelled cell dies, they can be taken up by host cells, leading to false positive results (Taylor et al., 

2012). However, a key advantage of these non-genetically encoded imaging probes is that in most 

cases, very high labelling efficiencies can be achieved (typically over 95%) following relatively short 

incubation times (4-24h) (Taylor et al., 2014).  Moreover, with the exception of the luciferases, much 

higher signal intensities can be obtained than with genetic reporters, making it possible to detect 

fewer numbers of cells.  There are a wide range of different types of non-genetically encoded 
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imaging probes, enabling cells to be tracked with all the major imaging modalities. For instance, 

superparamagnetic iron oxide nanoparticles (Taylor et al., 2012) and fluorine (19F)-based imaging 

agents (Tirotta et al., 2014) are used for MRI; gold nanorods and NIR dyes for photoacoustic imaging; 

NIR dyes for fluorescence imaging; persistent luminescent particles for bioluminescence imaging 

(Maldiney et al., 2014); technetium (99mTc) for SPECT; 18F-fluorodeoxyglucose (18F-FDG) for positron 

emission tomography (PET) (Rosado-de-Castro et al., 2014); and perfluorocarbon nanoparticles for 

ultrasound imaging (Winter, 2014). 

 

4.2 Imaging technologies for tracking cells and monitoring their effects on host tissues 

The following imaging technologies can be used for cell tracking and assessing the effects of the cells 

on host tissues in small animals: MRI, nuclear imaging (i.e., SPECT and PET), ultrasound, 

fluorescence, bioluminescence and photoacoustic imaging. However, all of these modalities have 

some limitations (James and Gambhir, 2012). For instance, MRI offers excellent spatial resolution, 

but temporal resolution is poor, so while organ-focussed imaging is possible, performing whole body 

scans is not really feasible. Nuclear imaging techniques permit whole body scanning and generate 

quantitative data, but suffer from poor spatial resolution, and perhaps more importantly, require 

animals to be exposed to ionising radiation, which is particularly problematic for longitudinal studies 

that necessitate repeated scanning. Ultrasound imaging is safe, but mainly gives structural, rather 

than molecular information, though when used in combination with microbubble contrast agents, it 

can be very useful for monitoring renal perfusion (Mahoney et al., 2014).  Fluorescence imaging is 

also safe, but sensitivity is poor and there is significant signal attenuation with increasing depth, so 

that ~100,000 cells emitting NIR fluorescence would be required in an internal organ such as the 

kidney in order to generate a detectable signal. Bioluminescence imaging is safe and has much 

greater sensitivity than MRI and fluorescence, allowing fewer than 100 cells to be detected, but 

because the strength of the emitted signal is affected by various parameters, including tissue depth 



9 
 

and substrate availability (luciferin in the case of firefly luciferase), it can be difficult to acquire 

reliable quantitative data in some applications (Fig. 1). An emerging imaging technology known as 

photoacoustic imaging overcomes many of the limitations of the aforementioned modalities. For 

instance, it has excellent sensitivity, allowing small numbers of cells to be detected; spatial and 

temporal resolution are both very good, permitting rapid whole body scanning of small rodents; it 

can generate quantitative data; it is completely safe, allowing repeated scanning; and for small 

animals such as mice, a particular type of photoacoustic scanner known as ‘multispectral 

optoacoustic tomography’ (‘MSOT’, built by iThera Medical Ltd) permits the entire depth of a mouse 

to be imaged without signal attenuation (Taruttis and Ntziachristos, 2015). However, a draw-back 

with MSOT (and all other photoacoustic scanners) is that visualisation of the lungs is not possible 

due to the presence of air in this organ. This is an important issue for cell tracking because it is 

known that most cell types tend to become trapped in the lungs following intravenous 

administration (Fischer et al., 2009; Tögel et al., 2008) and Fig. 2. 

 

Although no single imaging technology/imaging agent is capable of providing the breadth of 

information required, by using multimodal strategies that combine different imaging technologies, it 

is possible to monitor the biodistribution and fate of administered cells while simultaneously 

evaluating the effects on the tissues the cells populate. For instance, the easiest and most useful 

strategy for monitoring the whole-body biodistribution of cells in small animals is to introduce the 

firefly luciferase reporter and undertake bioluminescence imaging. However, because the spatial 

resolution of bioluminescence imaging is low and only a planar image is generated, it is difficult to 

pinpoint the exact location of the cells on the z-axis. Although locating the cells on the z-plane can 

be partially addressed by using 3D diffuse light imaging tomography (Fig. 2), bioluminescence 

imaging does not allow the intra-renal biodistribution of the cells to be monitored. However, this 

could be addressed by labelling the luciferase+ cells with either superparamagnetic iron oxide 
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nanoparticles or gold nanorods, and then undertaking bioluminescence imaging followed 

immediately by MRI or MSOT, respectively.  

 

5. Biodistribution of RMTs in kidney disease models 

5.1. Safety, efficacy and mechanisms of action 

To assess the safety of cell-based RMTs, knowledge of the biodistribution of the cells is required so 

that any potential adverse effects on the tissues the cells populate can be monitored, the most 

common potential adverse effects being embolism, inflammation, fibrosis, immunogenicity, mal-

differentiation and tumourigenesis (Heslop et al., 2015). The risk of any particular adverse effect is 

dependent on the cell type. Larger cell types are more likely to be entrapped in capillary beds and 

thus pose an increased risk of emboli formation (Fischer et al., 2009), whereas pluripotent cells have 

a greater propensity to form tumours. Particular care is needed with MSCs, which in some 

environments, can readily differentiate to form osteoblasts, chondrocytes and/or adipocytes, as 

shown in a previous study where MSCs administered in a rat IRI model generated adipocytes within 

the glomeruli, impairing renal function in the longer term (Kunter et al., 2007). Biodistribution 

studies are also necessary to assess the efficacy of cell therapies; for instance, it is important to 

know what proportion of the administered cell population reaches the kidneys, and for how long 

they persist, so that the relationship between efficacy and the intra-renal distribution of the cells can 

be determined. This information can give valuable insight into the mechanisms of action of the cells, 

as illustrated by a recent study by Geng et al (Geng et al., 2014) which showed that MSCs can 

ameliorate renal injury in a mouse rhabdomyolysis model despite them not engrafting in the kidney. 

Follow-on experiments suggested that the MSCs reduced kidney injury in this case by inducing 

endogenous macrophages to adopt an M2-like (i.e., ‘anti-inflammatory) phenotype. 

 

5.2. Renal engraftment and the route of administration 
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Intravenous (IV) administration is the most commonly used route for administering cells in rodent 

models of kidney injury. Although it is well-documented that most cell types, including MSCs, 

become entrapped in the pulmonary capillaries following IV administration (Fischer et al., 2009), 

some reports suggest that MSCs (Morigi et al., 2010) and kidney-derived progenitor cells (Ronconi et 

al., 2009) can bypass the pulmonary circulation and engraft in the kidney. It is important to note, 

however, that studies reporting renal engraft of cells following IV administration typically use the 

lipophilic dye, PKH26, to identify cells in histological sections of renal tissue, rather than using in vivo 

imaging approaches. The problem with lipophilic dyes is that they are readily transferred to host 

cells, leading to false positive results (Agrawal et al., 2014; Lassailly et al., 2010; Progatzky et al., 

2013). This problem is compounded by the fact that renal tissue emits high levels of 

autofluorescence, with levels being increased even further following injury (Sun et al., 2011). Hence, 

there is a risk that some of the patchy fluorescence that appears in damaged renal tissue could be 

mistaken for cells labelled with PKH26 or other fluorescent markers. Nevertheless, there are some 

reports that do appear to show the presence of small numbers of cells in the kidney following IV 

administration (Grange et al., 2014a). An explanation for this could be that certain nephrotoxic 

agents (e.g., glycerol-induced rhabdomyolysis) also cause acute lung injury, with the resulting 

hypoxia (Rodrigo et al., 2006) potentially leading to the recruitment of intrapulmonary arteriovenous 

anastomoses (IPAVAs) (Bates et al., 2012). IPAVAs are large diameter vessels in the lung that directly 

connect the arterial and venous networks, thus bypassing the pulmonary capillaries (Lovering et al., 

2010). Interestingly, if 106 15µm diameter fluorescent microspheres (approximately the same 

diameter as mouse MSCs) are injected into the superior vena cava of rats under normoxic 

conditions, no beads are observed in the kidneys, whereas under hypoxic conditions, approximately 

103 beads are detected (Bates et al., 2012). Each kidney receives ~10% of the cardiac output, so if 

106 beads were injected into the left cardiac ventricle, it would be expected that 105 would reach the 

kidneys. The fact that 103 beads are detected following IV administration in hypoxic rats shows that 

under these conditions, ~1% of injected beads can reach the kidneys. By extrapolation, this study 
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suggests that if cells are administered IV into hypoxic rodents, it is possible that 1% could engraft in 

the kidneys. This could explain why in some studies, cells can be observed in the kidneys following IV 

administration, but not in others. However, the small numbers of engrafting cells strongly suggests 

that the observed therapeutic effects are likely to be mediated by paracrine factors released from 

the remaining ~90% of the cell population that is entrapped within the lungs. 

 

To circumvent the ‘problem’ of lung entrapment, cells can be delivered into the kidney by 

administering then on the arterial side of the circulation. In rats, cells can be administered via the 

renal artery, whereas in mice, the cells need to be administered via the suprarenal aorta (Tögel et 

al., 2008) or left cardiac ventricle (Fig. 2), due to the renal artery being too small. Following 

administration of luciferase+ MSCs into the suprarenal aorta, bioluminescence imaging showed that 

MSCs were initially present in the kidneys, but by 24h, were mainly located in the lung (Tögel et al., 

2008). Similar results were obtained following administration of human MSCs into the left cardiac 

ventricle, where histological analysis showed that cells were observed in the kidneys shortly after 

being injected, but by 4 weeks, were barely detectable (Bentzon et al., 2005). Likewise, following 

administration of adipose-derived regenerative cells into the renal artery of rats, cells were initally 

present within the glomerular capillaries but had almost disappeared by 72h (Feng et al., 2010). Of 

note, a study by Zhuo et al (Zhuo et al., 2013) showed that it luciferase+ MSCs were injected into the 

right renal artery of rats subjected to IRI, bioluminescence was mainly observed in the lung. This is 

an interesting observation because it suggests that even when cells are injected into the renal 

artery, the majority exit via the renal vein and become entrapped in the lung. Analysis of renal 

function and histology in this rat IRI model showed that the therapeutic effects of the MSCs were 

similar, irrespective of whether they were administered IV or via the renal artery, which in light of 

the biodistribution data, is perhaps not too surprising (Zhuo et al., 2013).  Consistent with these 

findings, a recent meta-analysis shows that cell-based RMTs administered either IV or via the renal 

artery are similarly efficacious in rodent models of chronic kidney disease (Papazova et al., 2015). 
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Moreover, the extent of the therapeutic response appears to be independent of cell dose and the 

number of administrations. 

 

Cell therapies can also be introduced into the kidney by direct injection into the parenchyma 

(Harari‐Steinberg et al., 2013; Toyohara et al., 2015) or by injecting under the renal capsule 

(Toyohara et al., 2015), though the invasive nature of these administration routes means they would 

have little clinical utility. Toyohara et al showed that although iPSC-derived renal progenitors could 

integrate into renal tubules following parenchymal injection, the cells did not ameliorate injury in a 

mouse IRI model. Conversely, following administration under the renal capsule, the cells did not 

integrate into tubules but could promote renal recovery (Toyohara et al., 2015). These interesting 

results could possibly be explained by the fact that the subcapsular region of the kidney is a 

permissive environment that can support the growth of various cell types, including pancreatic islets 

and pluripotent cells (teratoma assays). Thus, the improved therapeutic efficacy observed following 

subcapsular administration might have simply been due to the fact that the iPSC-derived renal 

progenitors could survive for longer in this environment. In support of this, a more recent study has 

shown that if MSCs are injected into the renal parenchyma within a chitosan-based hydrogel that 

supports their survival, improved therapeutic efficacy is observed in a mouse model of IRI (Feng et 

al., 2016). 

 

5.3. Whole-body biodistribution of cell-based RMTs in rodent models of kidney disease 

A number of studies have shown that renal engraftment of cell-based RMTs increases in some 

models of kidney injury (Tögel et al., 2008; Grange et al., 2014b). For instance, intra-arterial 

administration of MSCs in a mouse IRI model leads to a short-term increase in the numbers of cells 

in the kidneys of injured mice compared with sham-operated controls (Tögel et al., 2008). This 

increased ‘homing’ could either be due to the injured renal tissue secreting chemo-attractants, or 
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could simply result from the MSCs getting temporarily stuck in the glomerular capillaries because of 

the decrease in capillary perfusion that typically occurs following ischaemic injury (Jerome et al., 

1994).  

 

Monitoring the whole-body biodistribution of cell therapies is particularly important in models 

where the nephrotoxic agent damages non-renal tissue as well as the kidneys. This is because cell-

based RMTs can readily engraft in various types of injured tissue, as shown in a study where MSCs 

injected into the aortic arch proliferated in a region of the mouse hind limb that had been damaged 

with radiation (Kean et al., 2013). Examples of such models include glycerol-induced rhabdomyolysis, 

which causes damage to the injected muscle and lungs, and adriamycin, which damages the heart 

and bone marrow (To et al., 2003). Indeed, intra-vital microscopy showed that MSCs labelled with a 

red fluorescent protein could be detected in the lung and muscle in a mouse rhabdomyolysis model 

(Geng et al., 2014). Likewise, work from our own laboratory shows that following administration of 

luciferase+ mouse kidney-derived stem cells (Fuente Mora et al, 2012) in a mouse model of 

adriamycin-induced nephropathy, cells engrafted in areas corresponding to the location of the heart 

and femoral bone marrow, but not in the kidneys (Fig. 3).  

 

6. Monitoring the effect of RMTs on renal function  

The glomerular filtration rate (GFR) is the most accurate measure of renal excretory function, but 

obtaining the GFR requires repeated blood and/or continuous urine sampling over a prolonged 

period (5-24h), which is technically challenging in rodents, particularly in mice, where blood is 

usually only taken following animal sacrifice via cardiac puncture. For this reason, an ‘estimated’ GFR 

based on levels of serum creatinine is typically used. However, a problem with using serum 

creatinine measurements is that between 35 and 50% of creatinine is excreted via tubular secretion 

in rodents rather than glomerular filtration (Eisner et al., 2010), making it a poor predictor of GFR. 
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This problem can be addressed by using a novel electronic device that can give an accurate 

indication of GFR in rodents by measuring the half-life of intravenously administered FITC-sinistrin 

(Schock-Kusch et al., 2011), a molecule that is exclusively filtered by the glomeruli. This device has 

recently been used to monitor changes in GFR in a mouse adriamycin model, where the 

measurements showed a strong positive correlation with the extent of glomerular histological 

damage (Scarfe et al., 2015). However, while the transcutaneous device allows longitudinal GFR 

measurements to be obtained, it does not provide any anatomical information, and cannot be 

applied to models where only one kidney is injured, as the device measures the global GFR, and does 

not give a measurement for each individual kidney.  Whole animal imaging technologies are 

therefore essential for undertaking the longitudinal studies required to monitor disease progression 

and therapeutic responses in the same animals over time. This approach is far superior to sacrificing 

animals at set time points and undertaking histological analyses, because apart from reducing animal 

numbers, the longitudinal data obtained offers the opportunity to observe patterns of change at an 

individual level, as well as increasing the statistical power of the experiment. MRI, nuclear imaging 

techniques (SPECT and PET) and ultrasound can all be used to monitor the efficacy of cell-based 

RMTs, but the multiplexing capability of MSOT offers unprecedented opportunities to monitor 

various aspects of renal function simultaneously, and will thus be discussed in more detail. 

 

6.1. MRI, SPECT, PET and ultrasound 

Of all the in vivo imaging modalities, MRI gives the highest spatial resolution and is therefore the 

modality of choice for performing anatomical imaging of the kidney (Fig.4). As kidney disease 

progresses, morphological changes occur in the renal parenchyma, which can be monitored using 3D 

rendering to assess organ volume changes (Zöllner et al., 2013), and with diffusion weighted imaging 

to monitor changes in renal microarchitecture (Ebrahimi et al., 2013). MRI can also be used to 

monitor various aspects of renal function, such as renal perfusion and the GFR (using dynamic 
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contrast enhanced MRI), as demonstrated in rat models of adriamycin-induced kidney injury and 

uninephrectomy, respectively (Egger et al., 2015; Zöllner et al., 2013). 

 

The nuclear imaging techniques, SPECT and PET, do not give any anatomical information and thus 

require co-registration with MRI or computed tomography (CT), but can be extremely useful for 

assessing renal function (Durand et al., 2011). For instance, the SPECT tracer, technetium-99m-

mercaptoacetyltriglycine (99mTc-MAG3), is routinely used in the clinic to monitor tubular secretion, 

and can also be applied to small rodents, as shown in a study where this strategy was used to 

monitor renal function over time in a mouse model of unilateral IRI (Herrler et al., 2012). SPECT can 

also be used to monitor GFR by measuring the clearance of the glomerular tracer, 99mTc- 

diethylenetriamine penta-acetate (DTPA), which has been used to investigate the renoprotective 

effects of oestrogen in a rat model of ureteric obstruction (Mao et al., 2014). More recently, a novel 

PET tracer, 2-deoxy-2-18F-fluorodeoxysorbitol (18F-FDS) has been developed, which like 99mTc-DTPA, 

can be used to monitor GFR (Wakabayashi et al., 2016). The advantage of PET over SPECT is that in 

the clinical setting, it offers higher spatial and temporal resolution, enabling more accurate 

quantitative data to be obtained.   

 

Ultrasound is routinely performed in the clinic to assess renal morphology, and by using Doppler 

ultrasound, it is possible to monitor renal perfusion (To et al., 2003).  The availability of small animal 

ultrasound scanners now makes it possible to assess renal morphology and function longitudinally in 

rodents. For instance, by undertaking contrast enhanced ultrasound with microbubble contrast 

agents, it is possible to monitor regional blood flow longitudinally in the mouse kidney (Sullivan et 

al., 2009). This technique has been used to monitor renal microperfusion in a mouse IRI model, and 

to assess the changes in perfusion that occur in the outer medulla over time (Fischer et al., 2016).  
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6.2. MSOT 

Multispectral optoacoustic tomography (MSOT) is a technique which relies on the photoacoustic 

effect to facilitate the volumetric and quantitative visualisation of tissues in vivo without the 

necessity for contrast agents. A laser is used to pulse light of multiple wavelengths towards a target 

tissue or organ, permitting imaging at high spatial resolution (150 μm) to a depth of ~3 cm.  This light 

is absorbed by endogenous photo-absorbers within the target tissue, which undergo thermoelastic 

expansion to generate sound waves that are detected by acoustic detectors (Mandal et al., 2015). A 

particular advantage of MSOT over other imaging modalities is its multiplexing capability, which 

arises from the ability of the scanner to distinguish different absorbance spectra, enabling several 

molecular targets to be detected simultaneously. Oxyhaemoglobin and deoxyhaemoglobin are 

particularly strong intrinsic absorbers that can be readily distinguished by MSOT (Buehler et al., 

2010; Wang and Hu, 2012), and could thus provide valuable information on renal perfusion, 

vascularisation and oxygenation, as has recently been undertaken with tumour tissue (Ermolayev et 

al., 2015). MSOT not only allows the visualisation of endogenous molecules, but also the 

simultaneous imaging of exogenous NIR dyes, proteins and nanoparticles such as gold nanorods, 

which absorb light in the NIR region of the spectrum (Deliolanis et al., 2014). MSOT can acquire 

cross-sectional images of anaesthetised small animals that can be taken in sequential steps to build a 

3D image of the target tissue or organ. Alternatively, one cross-sectional plane can be acquired for 

the duration of the imaging session to permit the fast dynamic scanning required for real-time 

pharmacokinetic analyses. This can be utilised to analyse the accumulation and/or clearance of 

exogenous NIR tracers in different regions of the kidney, enabling different aspects of renal function 

to be monitored (Fig. 5). In a recently published study by Scarfe et al (Scarfe et al., 2015), MSOT was 

used to monitor renal function longitudinally in a mouse adriamycin model. This was achieved by 

measuring the clearance of IRDye 800 carboxylate, an NIR dye that is rapidly and exclusively 

excreted by the kidneys (Taruttis et al., 2012). The Scarfe study showed that the time between the 

mean peak pixel intensity in the cortex and the pelvis (TMAX delay) was significantly greater in mice 
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with adriamycin-induced nephropathy than in healthy mice. Furthermore, the TMAX delay correlated 

strongly with glomerular scarring, as determined by histological analysis. The multiplexing capability 

of MSOT means that if the appropriate NIR tracers were available (i.e., tracers that were either 

exclusively filtered or secreted), it would be possible to assess these two important aspects of renal 

function simultaneously.  In conclusion, MSOT is a tool which has a range of applications for 

assessing RMTs in kidney disease models: due to its high spatial resolution it can be used to assess 

renal morphology; it can indicate the oxygenation status of the kidney; it can be used to track the 

biodistribution and fate of labelled cells and extracellular vesicles; and by monitoring the 

pharmacokinetics of renally excreted NIR dyes, it can accurately assess renal function. 

 

7. Concluding remarks 

The development and application of in vivo imaging strategies to accurately assess the safety, 

efficacy and mechanisms of action of cell-based RMTs will lead to a better understanding of their 

potential hazards and therapeutic benefits, thus underpinning the safe introduction of these new 

therapies into the clinic. Indeed, in vivo imaging approaches are already providing novel insights into 

the mechanisms of action of RMTs in rodent models of kidney disease, which is likely to lead to safer 

and more effective therapies in the future. For instance, we now know that for the majority of 

therapeutic cell-types, the regenerative effects on host renal tissue are mediated by paracrine or 

endocrine factors. Therefore, if these factors could be defined, it could be possible to administer 

them instead of the cells, thus bypassing some of the potential hazards associated with cell 

administration.  Although the focus of this review has been on renal cell-based RMTs, it is worth 

noting that in rodent models of various other diseases, including heart disease (Malliaras and 

Marban, 2011) and spinal cord injury (DePaul et al, 2015), there is increasing evidence that the 

therapeutic effects are mediated by paracrine factors rather than by the cells themselves.  
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Figure Legends 

Figure 1.  Radiance in the abdominal region of mice that received an intra-cardiac injection of 

luciferase+ cells does not increase linearly. Mouse kidney-derived stem cells were administered into 

the left cardiac ventricle in the range 1x105 to 6x105 and imaged immediately using BLI (IVIS 

Spectrum; Perkin Elmer). A region of interest (ROI) was drawn in the same position on each animal 

as shown in (A), and the total Flux recorded in (B). 
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Figure 2. Whole-body biodistribution of luciferase+ cells using 3D diffuse light imaging tomography. 

Human kidney-derived cells expressing luciferase were administered either intravenously or into the 

left cardiac ventricle of healthy mice and imaged immediately using a bioluminescence imager (IVIS 

Spectrum, Perkin Elmer). Following IV administration, cells are located in the lungs, and following 

intra-cardiac administration, some cells are located in the kidneys. 

Figure 3. Whole-body biodistribution of  luciferase+ mouse kidney-derived stem cells using 

bioluminescence imaging. Cells were administered into the left cardiac ventricle on the 2nd day 

following IV injection of adriamycin or saline (healthy control) and mice were imaged immediately or 

2 weeks later using a bioluminescence imager (IVIS Spectrum, Perkin Elmer). Mice that received 

adriamycin showed engraftment of cells in regions corresponding to the heart and femoral bone 

marrow, but not in the kidneys. No cells were detected in control mice at this time point. 

 

Figure 4. T2-weighted MR scan of the kidneys of a healthy mouse imaged in vivo using a Bruker 9.4 

Tesla MR scanner. 

 

Figure 5. (A) MSOT images showing the cross-section of a healthy mouse prior to and post 

administration of IRDye800 carboxylate (20 nmol). Blue and red regions of interest represents the 

renal cortex and pelvis, respectively. The dye is present in the cortex at the 10s time point, and by 1 

min, starts to accumulate in the pelvis. By 10min, the dye has cleared from the cortex.  (B) Graph 

showing the accumulation and clearance of IRDye800 carboxylate from the cortex and pelvis. 
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