86 research outputs found

    Gobierno universitario : entre la autogestión estamental y la responsabilidad social

    Get PDF
    <p>Low doses of the relatively neutralization resistant SHIV <sub>SF162P3</sub> isolate were incubated at 37<sup>0</sup>C for four hours with concentrations of the human monoclonal antibody IgG1 b12. The mixture was then added to GHOST cells and allowed to absorb for 24 hours. The cells were washed and cultured for a further 24 hours (4/24/2 assays). Four duplicate cultures were used for each point within a replicate. Data are fitted to a second-order (quadratic) equation. Dotted lines are extrapolations to the horizontal axis calculated from the quadratic plots. Axes are truncated and some symbols are excluded to improve clarity, especially around the origin. <b>A</b>. SHIV<sub>SF162P3</sub> exposed to GHOST cells from passage 7 (1 replicate) and 9 (2 replicates). Gray: control cultures where virus were incubated without monoclonal antibody: y = -0.00285 x<sup>2</sup> + 1.310 x -6.009; green: Virus pre-incubated with 0.625 µg/ml IgG1 b12: y = -0.00284 x<sup>2</sup> + 0.939 x -0.517. <b>B</b>. Gray same as for A. blue: Virus pre-incubated with 0.25 µg/ml IgG1 b12: y = -0.000606 x<sup>2</sup> + 0.870 x + 3.152. <b>C</b>. SHIV<sub>SF162P3</sub> exposed to GHOST cells from passages 15, 17 and 21. Gray: control cultures where virus were incubated without monoclonal antibody: y = 0.00182 x<sup>2</sup> + 0.665 x + 11.01; green: Virus pre-incubated with 0.625 µg/ml IgG1 b12: y = + 0.00135 x<sup>2</sup> + 0.487 x + 8.334. <b>D</b>. Gray same as for C. blue: where cultures are exposed to virus pre-incubated with 0.25 µg/ml IgG1 b12: y = 0.00140x<sup>2</sup> + 0.616x + 5.768. Interval between points where control and 0.25 µg/ml IgG1 b12 plots cut x-axis: 7.81 infectious virus.</p

    Protection in Macaques Immunized with HIV-1 Candidate Vaccines Can Be Predicted Using the Kinetics of Their Neutralizing Antibodies

    Get PDF
    A vaccine is needed to control the spread of human immunodeficiency virus type 1 (HIV-1). An in vitro assay that can predict the protection induced by a vaccine would facilitate the development of such a vaccine. A potential candidate would be an assay to quantify neutralization of HIV-1.We have used sera from rhesus macaques that have been immunized with HIV candidate vaccines and subsequently challenged with simian human immunodeficiency virus (SHIV). We compared neutralization assays with different formats. In experiments with the standardized and validated TZMbl assay, neutralizing antibody titers against homologous SHIV(SF162P4) pseudovirus gave a variable correlation with reductions in plasma viremia levels. The target cells used in the assays are not just passive indicators of virus infection but are actively involved in the neutralization process. When replicating virus was used with GHOST cell assays, events during the absorption phase, as well as the incubation phase, determine the level of neutralization. Sera that are associated with protection have properties that are closest to the traditional concept of neutralization: the concentration of antibody present during the absorption phase has no effect on the inactivation rate. In GHOST assays, events during the absorption phase may inactivate a fixed number, rather than a proportion, of virus so that while complete neutralization can be obtained, it can only be found at low doses particularly with isolates that are relatively resistant to neutralization.Two scenarios have the potential to predict protection by neutralizing antibodies at concentrations that can be induced by vaccination: antibodies that have properties close to the traditional concept of neutralization may protect against a range of challenge doses of neutralization sensitive HIV isolates; a window of opportunity also exists for protection against isolates that are more resistant to neutralization but only at low challenge doses

    Vaccine-induced neutralizing antibody responses to seasonal influenza virus H1N1 strains are not enhanced during subsequent pandemic H1N1 infection

    Get PDF
    The first exposure to influenza is presumed to shape the B-cell antibody repertoire, leading to preferential enhancement of the initially formed responses during subsequent exposure to viral variants. Here, we investigated whether this principle remains applicable when there are large genetic and antigenic differences between primary and secondary influenza virus antigens. Because humans usually have a complex history of influenza virus exposure, we conducted this investigation in influenza-naive cynomolgus macaques. Two groups of six macaques were immunized four times with influenza virus-like particles (VLPs) displaying either one (monovalent) or five (pentavalent) different hemagglutinin (HA) antigens derived from seasonal H1N1 (H1N1) strains. Four weeks after the final immunization, animals were challenged with pandemic H1N1 (H1N1pdm09). Although immunization resulted in robust virus-neutralizing responses to all VLP-based vaccine strains, there were no cross-neutralization responses to H1N1pdm09, and all animals became infected. No reductions in viral load in the nose or throat were detected in either vaccine group. After infection, strong virus-neutralizing responses to H1N1pdm09 were induced. However, there were no increases in virus-neutralizing titers against four of the five H1N1 vaccine strains; and only a mild increase was observed in virus-neutralizing titer against the influenza A/Texas/36/91 vaccine strain. After H1N1pdm09 infection, both vaccine groups showed higher virus-neutralizing titers against two H1N1 strains of intermediate antigenic distance between the H1N1 vaccine strains and H1N1pdm09, compared with the naive control group. Furthermore, both vaccine groups had higher HA-stem antibodies early after infection than the control group. In conclusion, immunization with VLPs displaying HA from antigenically distinct H1N1 variants increased the breadth of the immune response during subsequent H1N1pdm09 challenge, although this phenomenon was limited to intermediate antigenic variants

    Poxvirus MVA Expressing SARS-CoV-2 S Protein Induces Robust Immunity and Protects Rhesus Macaques From SARS-CoV-2

    Get PDF
    Novel safe, immunogenic, and effective vaccines are needed to control the COVID-19 pandemic, caused by SARS-CoV-2. Here, we describe the safety, robust immunogenicity, and potent efficacy elicited in rhesus macaques by a modified vaccinia virus Ankara (MVA) vector expressing a full-length SARS-CoV-2 spike (S) protein (MVA-S). MVA-S vaccination was well tolerated and induced S and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against SARS-CoV-2 and several variants of concern. S-specific IFNγ, but not IL-4, -producing cells were also elicited. After SARS-CoV-2 challenge, vaccinated animals showed a significant strong reduction of virus loads in bronchoalveolar lavages (BAL) and decreased levels in throat and nasal mucosa. Remarkably, MVA-S also protected macaques from fever and infection-induced cytokine storm. Computed tomography and histological examination of the lungs showed reduced lung pathology in MVA-S-vaccinated animals. These findings favor the use of MVA-S as a potential vaccine for SARS-CoV-2 in clinical trials.This research was supported by Fondo COVID-19 grant COV20/00151 (Spanish Health Ministry, Instituto de Salud Carlos III (ISCIII)), Fondo Supera COVID-19 grant (Crue Universidades-Banco Santander), and Spanish Research Council (CSIC) grant 202120E079 (to JG-A); CSIC grant 2020E84, la Caixa Banking Foundation grant CF01-00008, Ferrovial, and MAPFRE donations (to ME); a Spanish Ministry of Science and Innovation (MCIN)/Spanish Research Agency (AEI)/10.13039/501100011033 grant (PID2020-114481RB-I00; to JG-A and ME); and internal funding from the BPRC. This research work was also funded by the European Commission-NextGenerationEU, through CSIC’s Global Health Platform (PTI Salud Global) (to JG-A and ME). RD received grants from the European Commission Horizon 2020 Framework Programme (Project VIRUSCAN FETPROACT-2016: 731868 and Project EPIC-CROWN-2: 101046084), and Fundación Caixa-Health Research HR18-00469 (Project StopEbola).Peer reviewe

    Correction:How the COVID-19 pandemic highlights the necessity of animal research (vol 30, pg R1014, 2020)

    Get PDF
    (Current Biology 30, R1014–R1018; September 21, 2020) As a result of an author oversight in the originally published version of this article, a number of errors were introduced in the author list and affiliations. First, the middle initials were omitted from the names of several authors. Second, the surname of Dr. van Dam was mistakenly written as “Dam.” Third, the first name of author Bernhard Englitz was misspelled as “Bernard” and the surname of author B.J.A. Pollux was misspelled as “Pullox.” Finally, Dr. Keijer's first name was abbreviated rather than written in full. These errors, as well as various errors in the author affiliations, have now been corrected online

    <i>In Vitro</i> Neutralization of Low Dose Inocula at Physiological Concentrations of a Monoclonal Antibody Which Protects Macaques against SHIV Challenge

    Get PDF
    <div><p>Background</p><p>Passive transfer of antibodies can be protective in the simian human immunodeficiency virus (SHIV) – rhesus macaque challenge model. The human monoclonal antibody IgG1 b12 neutralizes human immunodeficiency type 1 (HIV-1) <i>in vitro</i> and protects against challenge by SHIV. Our hypothesis is that neutralizing antibodies can only completely inactivate a relatively small number of infectious virus.</p> <p>Methods And Findings</p><p>We have used GHOST cell assays to quantify individual infectious events with HIV-1<sub>SF162</sub> and its SHIV derivatives: the relatively neutralization sensitive SHIV<sub>SF162P4</sub> isolate and the more resistant SHIV<sub>SF162P3</sub>. A plot of the number of fluorescent GHOST cells with increasing HIV-1<sub>SF162</sub> dose is not linear. It is likely that with high-dose inocula, infection with multiple virus produces additive fluorescence in individual cells. In studies of the neutralization kinetics of IgG1 b12 against these isolates, events during the absorption phase of the assay, as well as the incubation phase, determine the level of neutralization. It is possible that complete inactivation of a virus is limited to the time it is exposed on the cell surface. Assays can be modified so that neutralization of these very low doses of virus can be quantified. A higher concentration of antibody is required to neutralize the same dose of resistant SHIV<sub>SF162P3</sub> than the sensitive SHIV<sub>SF162P4</sub>. In the absence of selection during passage, the density of the CCR5 co-receptor on the GHOST cell surface is reduced. Changes in the CD4 : CCR5 density ratio influence neutralization.</p> <p>Conclusions</p><p>Low concentrations of IgG1 b12 completely inactivate small doses of the neutralization resistant SHIV <sub>SF162P3</sub>. Assays need to be modified to quantify this effect. Results from modified assays may predict protection following repeated low-dose shiv challenges in rhesus macaques. It should be possible to induce this level of antibody by vaccination so that modified assays could predict the outcome of human trials.</p> </div

    Aerosolized Exposure to H5N1 Influenza Virus Causes Less Severe Disease Than Infection via Combined Intrabronchial, Oral, and Nasal Inoculation in Cynomolgus Macaques

    No full text
    Infection with highly pathogenic avian H5N1 influenza virus in humans often leads to severe respiratory disease with high mortality. Experimental infection in non-human primates can provide additional insight into disease pathogenesis. However, such a model should recapitulate the disease symptoms observed in humans, such as pneumonia and inflammatory cytokine response. While previous studies in macaques have demonstrated the occurrence of typical lesions in the lungs early after infection and a high level of immune activation, progression to severe disease and lethality were rarely observed. Here, we evaluated a routinely used combined route of infection via intra-bronchial, oral, and intra-nasal virus inoculation with aerosolized H5N1 exposure, with or without the regular collection of bronchoalveolar lavages early after infection. Both combined route and aerosol exposure resulted in similar levels of virus replication in nose and throat and similar levels of immune activation, cytokine, and chemokine release in the blood. However, while animals exposed to H5N1 by combined-route inoculation developed severe disease with high lethality, aerosolized exposure resulted in less lesions, as measured by consecutive computed tomography and less fever and lethal disease. In conclusion, not virus levels or immune activation, but route of infection determines fatal outcome for highly pathogenic avian H5N1 influenza infection

    Dose–response plots of HIV-1 <sub>SF162</sub> and SHIV variants on GHOST cells.

    No full text
    <p>GHOST cell cultures were exposed to different doses of virus, plotted on the x-axis (= horizontal). The number of cells which fluoresce after infection is plotted on the y-axis (= vertical). <b>A</b>. Linear regression of HIV-1 <sub>SF162</sub> - infected cultures: y = 1.457 ± 0.066 x -584.3 ± 89.86. <b>B</b>. Fitting of data to second-order (quadratic) equation: y = 4.31 x 10<sup>-4</sup> x<sup>2</sup> + 0.347 x + 26.63. <b>C</b>. Quadratic plot of SHIV<sub>SF162P4</sub> on GHOST cells: y = -1.03 x 10<sup>-3</sup> x<sup>2</sup> + 1.349 x + -4.17 x 10<sup>-4</sup>. <b>D</b>. Quadratic plot of SHIV<sub>SF162P3</sub> on GHOST cells: y = -7.63 x 10<sup>-5</sup> x<sup>2</sup> + 0.963x + -4.077.</p

    Influenza a virus hemagglutinin trimer, head and stem proteins identify and quantify different hemagglutinin-specific b cell subsets in humans

    No full text
    Antibody responses against the influenza A virus hemagglutinin (HA)-protein are studied intensively because they can protect against (re)infection. Previous studies have focused on antibodies targeting the head or stem domains, while other possible specificities are often not taken into account. To study such specificities, we developed a diverse set of HA-domain proteins based on an H1N1pdm2009-like influenza virus strain, including monomeric head and trimeric stem domain, as well as the full HA-trimer. These proteins were used to study the B cell and antibody responses in six healthy human donors. A large proportion of HA-trimer B cells bound exclusively to HA-trimer probe (54–77%), while only 8–18% and 9–23% were able to recognize the stem or head probe, respectively. Monoclonal antibodies (mAbs) were isolated and three of these mAbs, targeting the different domains, were characterized in-depth to confirm the binding profile observed in flow cytometry. The head-directed mAb, targeting an epitope distinct from known head-specific mAbs, showed relatively broad H1N1 neutralization and the stem-directed mAb was able to broadly neutralize diverse H1N1 viruses. Moreover, we identified a trimer-directed mAb that did not compete with known head or stem domain specific mAbs, suggesting that it targets an unknown epitope or conformation of influenza virus’ HA. These observations indicate that the described method can characterize the diverse antibody response to HA and might be able to identify HA-specific B cells and antibodies with previously unknown specificities that could be relevant for vaccine design
    corecore