213 research outputs found

    The female protective effect in autism spectrum disorder is not mediated by a single genetic locus

    Get PDF
    Background: A 4:1 male to female sex bias has consistently been observed in autism spectrum disorder (ASD). Epidemiological and genetic studies suggest a female protective effect (FPE) may account for part of this bias; however, the mechanism of such protection is unknown. Quantitative assessment of ASD symptoms using the Social Responsiveness Scale (SRS) shows a bimodal distribution unique to females in multiplex families. This leads to the hypothesis that a single, common genetic locus on chromosome X might mediate the FPE and produce the ASD sex bias. Such a locus would represent a major therapeutic target and is likely to have been missed by conventional genome-wide association study (GWAS) analysis. Methods: To explore this possibility, we performed an association study in affected versus unaffected females, considering three tiers of single nucleotide polymorphisms (SNPs) as follows: 1) regions of chromosome X that escape X-inactivation, 2) all of chromosome X, and 3) genome-wide. Results: No evidence of a SNP meeting the criteria for a single FPE locus was observed, despite the analysis being well powered to detect this effect. Conclusions: The results do not support the hypothesis that the FPE is mediated by a single genetic locus; however, this does not exclude the possibility of multiple genetic loci playing a role in the FPE.Intellectual and Developmental Disabilities Research Center at Washington University (NIH/NICHD) [P30 HD062171]; Simons Foundation (SFARI) [307705]; Canadian Institutes of Health Research; [R01 HD042541]SCI(E)[email protected]; [email protected]

    Cooperative interactions in the West Nile virus mutant swarm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA viruses including arthropod-borne viruses (arboviruses) exist as highly genetically diverse mutant swarms within individual hosts. A more complete understanding of the phenotypic correlates of these diverse swarms is needed in order to equate RNA swarm breadth and composition to specific adaptive and evolutionary outcomes.</p> <p>Results</p> <p>Here, we determined clonal fitness landscapes of mosquito cell-adapted <it>West Nile virus</it> (WNV) and assessed how altering the capacity for interactions among variants affects mutant swarm dynamics and swarm fitness. Our results demonstrate that although there is significant mutational robustness in the WNV swarm, genetic diversity also corresponds to substantial phenotypic diversity in terms of relative fitness <it>in vitro</it>. In addition, our data demonstrate that increasing levels of co-infection can lead to widespread strain complementation, which acts to maintain high levels of phenotypic and genetic diversity and potentially slow selection for individual variants. Lastly, we show that cooperative interactions may lead to swarm fitness levels which exceed the relative fitness levels of any individual genotype.</p> <p>Conclusions</p> <p>These studies demonstrate the profound effects variant interactions can have on arbovirus evolution and adaptation, and provide a baseline by which to study the impact of this phenomenon in natural systems.</p

    Design and testing of a 96-channel neural interface module for the Networked Neuroprosthesis system

    Full text link
    Abstract Background The loss of motor functions resulting from spinal cord injury can have devastating implications on the quality of one’s life. Functional electrical stimulation has been used to help restore mobility, however, current functional electrical stimulation (FES) systems require residual movements to control stimulation patterns, which may be unintuitive and not useful for individuals with higher level cervical injuries. Brain machine interfaces (BMI) offer a promising approach for controlling such systems; however, they currently still require transcutaneous leads connecting indwelling electrodes to external recording devices. While several wireless BMI systems have been designed, high signal bandwidth requirements limit clinical translation. Case Western Reserve University has developed an implantable, modular FES system, the Networked Neuroprosthesis (NNP), to perform combinations of myoelectric recording and neural stimulation for controlling motor functions. However, currently the existing module capabilities are not sufficient for intracortical recordings. Methods Here we designed and tested a 1 × 4 cm, 96-channel neural recording module prototype to fit within the specifications to mate with the NNP. The neural recording module extracts power between 0.3–1 kHz, instead of transmitting the raw, high bandwidth neural data to decrease power requirements. Results The module consumed 33.6 mW while sampling 96 channels at approximately 2 kSps. We also investigated the relationship between average spiking band power and neural spike rate, which produced a maximum correlation of R = 0.8656 (Monkey N) and R = 0.8023 (Monkey W). Conclusion Our experimental results show that we can record and transmit 96 channels at 2ksps within the power restrictions of the NNP system and successfully communicate over the NNP network. We believe this device can be used as an extension to the NNP to produce a clinically viable, fully implantable, intracortically-controlled FES system and advance the field of bioelectronic medicine.https://deepblue.lib.umich.edu/bitstream/2027.42/147921/1/42234_2019_Article_19.pd

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    Identification of developmental and behavioral markers associated with genetic abnormalities in Autism Spectrum Disorder

    Get PDF
    ObjectiveAside from features associated with risk of neurogenetic syndromes in general (e.g., cognitive impairment), limited progress has been made in identifying phenotype-genotype relationships in autism spectrum disorder (ASD). The objective of this study was to extend work in the Simons Simplex Collection by comparing the phenotypic profiles of ASD probands with or without identified de novo loss of function mutations or copy number variants in high-confidence ASD-associated genes or loci.MethodAnalyses preemptively accounted for documented differences in sex and IQ in affected individuals with de novo mutations by matching probands with and without these genetic events on sex, IQ, and age before comparing them on multiple behavioral domains.ResultsChildren with de novo mutations (N=112) had a greater likelihood of motor delay during early development (later age at walking), but they were less impaired on certain measures of ASD core symptoms (parent-rated social communication abnormalities and clinician-rated diagnostic certainty about ASD) in later childhood. These children also showed relative strengths in verbal and language abilities, including a smaller discrepancy between nonverbal and verbal IQ and a greater likelihood of having achieved fluent language (i.e., regular use of complex sentences).ConclusionsChildren with ASD with de novo mutations may exhibit a "muted" symptom profile with respect to social communication and language deficits relative to those with ASD with no identified genetic abnormalities. Such findings suggest that examining early milestone differences and standardized testing results may be helpful in etiologic efforts, and potentially in clinical differentiation of various subtypes of ASD, but only if developmental and demographic variables are properly accounted for first

    Common genetic variants, acting additively, are a major source of risk for autism

    Full text link
    Abstract Background Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals. Methods By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status. Results By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating. Conclusions Our results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability.http://deepblue.lib.umich.edu/bitstream/2027.42/112370/1/13229_2012_Article_55.pd

    Common Genetic Variants, Acting Additively, Are a Major Source of Risk for Autism

    Get PDF
    Background: Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals. Methods: By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status. Results: By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating. Conclusions: Our results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability

    De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis.

    Get PDF
    We previously established the contribution of de novo damaging sequence variants to Tourette disorder (TD) through whole-exome sequencing of 511 trios. Here, we sequence an additional 291 TD trios and analyze the combined set of 802 trios. We observe an overrepresentation of de novo damaging variants in simplex, but not multiplex, families; we identify a high-confidence TD risk gene, CELSR3 (cadherin EGF LAG seven-pass G-type receptor 3); we find that the genes mutated in TD patients are enriched for those related to cell polarity, suggesting a common pathway underlying pathobiology; and we confirm a statistically significant excess of de novo copy number variants in TD. Finally, we identify significant overlap of de novo sequence variants between TD and obsessive-compulsive disorder and de novo copy number variants between TD and autism spectrum disorder, consistent with shared genetic risk

    Potential cost savings with terrestrial rabies control

    Get PDF
    BACKGROUND: The cost-benefit of raccoon rabies control strategies such as oral rabies vaccination (ORV) are under evaluation. As an initial quantification of the potential cost savings for a control program, the collection of selected rabies cost data was pilot tested for five counties in New York State (NYS) in a three-year period. METHODS: Rabies costs reported to NYS from the study counties were computerized and linked to a human rabies exposure database. Consolidated costs by county and year were averaged and compared. RESULTS: Reported rabies-associated costs for all rabies variants totalled 2.1million,forhumanrabiespostexposureprophylaxes(PEP)(90.92.1 million, for human rabies postexposure prophylaxes (PEP) (90.9%), animal specimen preparation/shipment to laboratory (4.7%), and pet vaccination clinics (4.4%). The proportion that may be attributed to raccoon rabies control was 37% (784,529). Average costs associated with the raccoon variant varied across counties from 440to440 to 1,885 per PEP, 14to14 to 44 per specimen, and 0.33to0.33 to 15 per pet vaccinated. CONCLUSION: Rabies costs vary widely by county in New York State, and were associated with human population size and methods used by counties to estimate costs. Rabies cost variability must be considered in developing estimates of possible ORV-related cost savings. Costs of PEPs and specimen preparation/shipments, as well as the costs of pet vaccination provided by this study may be valuable for development of more realistic scenarios in economic modelling of ORV costs versus benefits
    corecore