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ABSTRACT 

Objective: Aside from features associated with risk of neurogenetic syndromes in general (e.g., 

cognitive impairment), limited progress has been made in identifying phenotype-genotype 

relationships in autism spectrum disorder (ASD). The objective of this study was to extend work 

in the Simons Simplex Collection by comparing the phenotypic profiles of ASD probands with 

or without identified de novo loss of function mutations or copy number variants in high-

confidence ASD-associated genes or loci. 

Method: Analyses preemptively accounted for documented differences in sex and IQ in affected 

individuals with de novo mutations by matching probands with and without these genetic events 

on sex, IQ, and age before comparing them on multiple behavioral domains. 

Results: Children with de novo mutations (N=112) had a greater likelihood of motor delay 

during early development (later age at walking), but they were less impaired on certain measures 

of ASD core symptoms (parent-rated social communication abnormalities and clinician-rated 

diagnostic certainty about ASD) in later childhood. These children also showed relative strengths 

in verbal and language abilities, including a smaller discrepancy between nonverbal and verbal 

IQ and a greater likelihood of having achieved fluent language (i.e., regular use of complex 

sentences). 

Conclusions: Children with ASD with de novo mutations may exhibit a “muted” symptom 

profile with respect to social communication and language deficits relative to those with ASD 

with no identified genetic abnormalities. Such findings suggest that examining early milestone 

differences and standardized testing results may be helpful in etiologic efforts, and potentially in 

clinical differentiation of various subtypes of ASD, but only if developmental and demographic 

variables are properly accounted for first. 
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INTRODUCTION 

Although the majority of children with autism spectrum disorder (ASD) do not have 

genetic abnormalities that are identifiable with currently available technology, a variety of 

single-gene disorders and chromosomal abnormalities have been associated with ASD and/or 

intellectual disability (1). In addition, among children with clinical diagnoses of ASD, those with 

dysmorphic features or complex medical problems (2, 3) are more likely to be identified as 

having strongly predisposing genetic risk factors (4). Together, these observations have led to a 

distinction between “syndromic” ASD, in which ASD is one of many diagnoses recognized as 

part of a neurogenetic syndrome, and the more common “idiopathic” ASD, in which ASD is 

presumed to occur as a result of unknown causes (3). 

Recent advances in genomics technology, together with analyses of large-scale 

collections of ASD probands, have challenged the syndromic-idiopathic distinction. Microarray 

analysis and whole exome sequencing in large datasets like the Simons Simplex Collection 

(SSC) have identified numerous ASD-associated genetic loci in probands (5-9) and have 

demonstrated clearly an important role for highly penetrant de novo genetic mutations in 

individuals previously assumed to have idiopathic ASD and specifically selected for minimal 

syndromic features. These findings highlight the importance of changing methodological 

standards to require genetic testing prior to idiopathic classification, but they also leave open the 

question of whether individuals with identifiable genetic abnormalities are phenotypically 

distinguishable. 

Multiple investigations have compared individuals with ASD-associated syndromes to 

those with presumed idiopathic ASD to understand how various neurobiological mechanisms 

might contribute to ASD behavioral phenotypes (10-12). Previous comparisons of individuals 
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with ASD with or without an associated syndrome (or a de novo mutation of potential 

pathogenic significance) have been limited by the difficulty of identifying appropriate controls 

with idiopathic ASD (10). Individuals with neurogenetic syndromes with ASD often have 

significantly lower cognitive abilities than those with either ASD or the neurogenetic syndrome, 

making it difficult to interpret direct comparisons on behavioral measures (13). Because ASD 

symptom measures are strongly influenced by IQ, comparing ASD severity across cognitive 

ability is particularly problematic (14). Thus, while associations have emerged between 

individual phenotypic variables (female sex, lower IQ, seizures, deviation in head circumference 

and body mass index) and the presence of de novo mutations in ASD loci (5, 8, 15), efforts to 

link genetic findings to ASD-related behavioral profiles (e.g., strengths, weaknesses, 

developmental features) have had limited success (16). 

The present study extends work in the SSC by simultaneously considering both genetic 

and phenotypic data in comparing matched groups of probands with ASD with or without 

identified de novo loss of function (dnLoF) mutations or de novo copy number variants 

(dnCNVs) in ASD-associated genes or loci. Evaluation of these abnormalities was based on 

findings from relatively new statistical methods for defining the likelihood that a particular 

genetic locus is associated with ASD (8). In contrast to previous phenotype-genotype 

explorations of the SSC, our analytic strategy preemptively accounts for the documented IQ 

difference in affected individuals with de novo mutations (8), comparing them to age-, sex-, and 

nonverbal IQ-matched probands (“controls”) from the SSC who did not have any of the genetic 

events described above. Although this is not the first exploration of the SSC phenotypic data, we 

believe it is the first to use appropriately matched ASD controls to gain insight into the 

phenotypic profiles of individuals with ASD with certain types of genetic abnormalities. In 
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addition to group profiles, we provide individual-level phenotypic data in relation to each genetic 

abnormality specified, to facilitate ongoing efforts to explore genotype-phenotype relationships 

(17, 18). 

METHOD 

Sample Collection 

Phenotypic assessments and biological samples were collected from 12 university-based 

centers as part of the SSC. Probands with ASD were included if they were between 4 years and 

17 years, 11 months of age, did not have any first-, second-, or third-degree relatives with ASD, 

and met criteria for autism, ASD, or Asperger syndrome based on the standard SSC assessment 

(see reference 19. Participants provided written informed consent (and assent, as appropriate) 

after receiving a complete description of the study. 

Genetic Data and Participants 

A recent comprehensive, integrated analysis of transmitted and de novo variation in ASD 

identified 65 ASD-associated genes and an additional six ASD-associated loci with high 

confidence (false discovery rate 0.1) (8). Most evidence for ASD association came from dnLoF 

mutations or dnCNVs. Based on the results of Illumina genotyping array and whole exome 

sequencing data to identify dnLoF mutations and dnCNVs, we divided the SSC probands into 

three groups: 1) 112 probands with at least one dnLoF mutation or dnCNV in, or including, a 

high-confidence ASD gene or locus (the high-confidence group); 2) 292 probands with a dnLoF 

mutation or dnCNV, but not in, or including, a high-confidence ASD gene or locus (the low-

confidence group); and 3) 1,751 probands with no dnLoF mutations or dnCNVs in any gene or 

locus (the none group). An additional 702 probands were excluded from these groups because 

they did not have both genotyping array and whole exome sequencing data available, and 
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therefore we could not be sure of their mutation status. The main analyses were conducted 

between the high-confidence group and a subset of 112 cases from the None group, matched on 

nonverbal IQ, age, and sex. We refer to these cases as “matched autism controls.” Figure 1 

depicts the process by which participants were included in the high-confidence group or the 

matched autism control group. The participants’ demographic characteristics are summarized in 

Table 1. A list of the specific genetic abnormalities represented in the high-confidence group is 

available in Table S1 in the data supplement that accompanies the online edition of this article. 

We examined the high-confidence group as a whole, and we also identified seven dnLoF 

mutations or dnCNVs found in at least four participants; these have previously been reported 

separately, and they include 16q11.2 deletions and duplications, 15q11.2–13 duplications, 1q21.1 

duplication, and 7q11.23 duplications (7), as well as DYRK1A LoF mutations (20) and CHD8 

LoF mutations (16). Supplementary analyses compared individuals from the low-confidence 

group, who may later be identified as high confidence as further studies are completed, to a 

separate group of matched controls from the none group (see Table S2 and Figure S1 in the 

online data supplement). 

Measures 

Matched groups were compared on a number of phenotypic domains. Cognitive ability 

was indexed using nonverbal IQ and verbal IQ, which were derived from standardized tests 

administered according to the child’s ability level. Standard scores from the daily living skills 

domain of the Vineland Adaptive Behavior Scales, 2nd Edition (Vineland II) (21) provide a 

measure of independent functioning that can be used alongside cognitive ability to index 

presence and severity of intellectual disability. Motor skills were measured using item 5 from 

the Autism Diagnostic Interview–Revised (ADI-R) (22), which inquired about age at onset of 
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independent walking, and the raw scores from the Purdue pegboard task. Language was 

measured using age at first words (item 9) and age at first phrases (item 10) from the ADI-R; the 

module of the Autism Diagnostic Observation Schedule (ADOS) (23) that provides a gross 

estimate of expressive language level (module 1, nonverbal/single words; module 2, flexible 

phrase speech; and modules 3 and 4, fluent speech/regular use of complex sentences); the 

standard score on the Peabody Picture Vocabulary Test, 4th Edition (24); and the standard score 

on the Vineland-II communication domain. We also report a language deficit variable, coded as 

present when the child’s ADOS module was lower than what would be expected based on his or 

her nonverbal mental age. Social communication deficits and restricted and repetitive 

behaviors associated with ASD were measured using total scores from the social, 

communication, and repetitive behavior domains of the ADI-R and the domain-calibrated scores 

from the ADOS (25). The ADI-R domain scores are based on behaviors retrospectively reported 

by the parent to have occurred when the child was between ages 4 and 5 or ever in the past, 

whereas the ADOS is based on currently observed behaviors. Current level of overall ASD 

symptoms was assessed using total scores from the Social Responsiveness Scale (SRS) (26), the 

ADOS overall calibrated severity scores (27), and a clinician-rated measure of ASD diagnostic 

certainty (the minimum score was 6 in the presence of an ASD diagnosis, so SSC scores ranged 

from 6 to 15). Behavior problems not specific to ASD were measured using T scores for 

externalizing and internalizing problems from the Child Behavior Checklist (28), a parent-report 

questionnaire. Presence of seizures was assessed using combined information from the SSC 

medical history form and ADI-R item 85. Family history of major psychiatric problems was 

determined from the SSC medical history form, based on presence or absence of schizophrenia, 
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bipolar disorder, or depressive disorder in a family member with a level of genetic relatedness at 

least on the order of first cousin (see 29). 

Statistical Analysis 

A randomized “nearest neighbor” approach was used to match probands with dnLoF 

mutations or dnCNVs in genes or loci with previously established ASD significance (high-

confidence group) to probands with no such genetic events (none group) at a 1:1 ratio. Matching 

procedures were performed separately for male and female participants, using ranges of 10 

nonverbal IQ points and 8 months of age. These ranges were selected as the narrowest ranges 

within which probands from the matched autism control group could be found for all probands 

from the high-confidence group. Matching procedures were performed using a macro in SAS 

(30). Case-control differences were evaluated using a mixed model with a random effect of the 

case-control pair (to reflect the correlated nature of the data) and a fixed effect of group for 

continuous variables or a conditional logistic regression for categorical variables. In both types 

of models, an interaction with nonverbal IQ was included to determine whether group 

differences were moderated by cognitive level. We present both uncorrected and false-discovery-

rate-corrected (31) p values. False discovery rate was calculated separately for the case-control 

differences and the moderator analyses, both using the total number of comparisons. Analyses 

were conducted in SAS, version 9.3 (32). 

RESULTS 

As has been reported in previous phenotype-genotype explorations within the SSC (5, 8), 

probands with dnLoF mutations or dnCNVs had lower nonverbal IQ and were more likely to be 

female than those without (in the high-confidence group and the entire none group, nonverbal IQ 

was 75 and 86, respectively [p<0.0001], and the proportion female was 23% and 12%, 
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respectively [p=0.0002]). The results of the matching procedures are shown in Table 1. Results 

of the paired comparisons are also shown in Table 2 and are illustrated relative to the full SSC 

sample in Figure 2. After correction for multiple comparisons, several differences between the 

matched groups were observed. 

Children from the high-confidence group scored significantly lower (indicating fewer 

ASD symptoms) on the ADI-R social domain total than the matched autism control group 

(pcorrected=0.01), but the difference in ADI-R nonverbal communication total scores did not 

survive correction (pcorrected=0.07). Current ASD symptoms (ADOS social affect calibrated 

severity score) did not differ significantly between the high-confidence and matched autism 

control groups after correction (pcorrected=0.07), although the trend was for less severe symptoms 

in the high-confidence group. Clinicians were significantly less confident in the ASD diagnosis 

for probands in the high-confidence group (pcorrected=0.001). 

Generally, the verbal cognitive and language abilities of the high-confidence group exceeded 

those of the matched autism control group (Table 2). Verbal IQ was higher (pcorrected=0.02) and 

more consistent with nonverbal IQ (nonverbal IQ-verbal IQ difference between groups, 

pcorrected=0.01) in the high-confidence group than in the matched autism control group, which had 

larger splits between nonverbal and verbal IQ. The mean split in the high-confidence group was 

nearly zero (mean=0.61 [SD=16.46]) compared with mean=7.40 [SD=16.10] in the matched 

autism control group; Cohen’s d=0.41, 95% CI=0.14, 0.68. Probands in the high-confidence 

group also had significantly higher scores on the Peabody Picture Vocabulary Test than the 

matched autism control group (pcorrected=0.01) (a difference that was more pronounced at lower 

levels of nonverbal IQ; interaction pcorrected=0.02) and were more likely to receive modules 3 or 4 

of the ADOS (pcorrected=0.01). 
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Probands in the high-confidence group reportedly started walking at a significantly later 

age than the matched autism control group (pcorrected=0.001). This difference depended on the 

nonverbal IQ level of the case-control pair, such that the magnitude of the difference in age at 

first walking was larger at lower IQ (interaction pcorrected=0.02). When nonverbal IQ was held 

constant at 30, the least squares mean estimate for age at first walking in the high-confidence 

group was 19.0 months, compared with 13.6 months in the matched autism control group; at a 

nonverbal IQ of 50, the mean estimates were 17.6 and 13.6 months, respectively; at a nonverbal 

IQ of 70, the mean estimates were 16.1 and 13.5 months, respectively; and at a nonverbal IQ of 

90, the mean estimates were 14.7 and 13.5 months, respectively. No differences between groups 

were observed on the Purdue pegboard task, a measure of current fine motor skills. 

Phenotypic profiles for subgroups of high-confidence probands with identified de novo 

mutations in the same locus (observed in at least four individuals in this sample) are presented in 

Figure 3. Although a few discernable profiles are apparent, readers are cautioned that within-

group variability was high and sample sizes were small. 

DISCUSSION 

Findings from previous phenotype-genotype explorations within the SSC, and from other 

comparisons of syndromic and idiopathic ASD, indicate that children with ASD who have 

identifiable genetic abnormalities have lower IQ and higher rates of medical problems and 

dysmorphology than those without genetic abnormalities (3, 5, 8). Differences in behaviors that 

are related to ASD more specifically (rather than to neurodevelopmental disruption or 

intellectual disability more generally) have not typically emerged from large genotyped data sets, 

although this may be attributable to the fact that ASD symptom measures are strongly influenced 

by IQ (14). In order to further our understanding of whether and how children with ASD with 
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either dnLoF mutations or dnCNVs in the SSC differ from comparable children with ASD 

without these abnormalities, we identified a group of sex-, age-, and nonverbal IQ-matched 

individuals to serve as controls. These matched groups were then compared across several 

phenotypic domains relevant to the characterization of individuals with ASD. Although the 

smaller male-to-female ratio in the high-confidence group compared with the none group was 

interesting and consistent with the literature on female sex conferring specific risk for de novo 

genetic abnormalities (5), the small number of female participants in the sample prohibited sex-

based comparisons. 

Results of the matched comparisons indicated that children with dnLoF mutations or 

dnCNVs in high-confidence ASD-associated genes or loci were less impaired on certain 

measures of ASD core symptoms (primarily social communication and diagnostic certainty) than 

their matched counterparts. Children from the high-confidence group also showed relative 

strengths in verbal and language abilities, including a smaller gap between nonverbal and verbal 

IQ, and were more likely to have achieved fluent expressive language abilities at the time of the 

SSC assessment (i.e., they were regularly using complex sentences and therefore capable of 

completing module 3 or 4 of the ADOS). This suggests that once IQ and age are taken into 

account, children with ASD with certain genetic abnormalities may exhibit a “muted” symptom 

profile with respect to language and social communication deficits relative to those with ASD 

with no identified genetic abnormalities. On the other hand, consistent with previous findings in 

individuals with intellectual disability, children from the high-confidence group were more likely 

to show delays in motor functioning as measured by onset of independent walking (see 33). In 

the matched ASD comparisons, for every 1-month delay in walking, there was a 17% increase in 

the odds of a de novo mutation being present, suggesting that age at onset of walking may be 
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useful as a marker of potential genetic abnormality in samples with ASD (33). Furthermore, this 

finding of delayed gross motor milestone attainment shifts the profile of children with de novo 

mutations in this sample away from an exclusively ASD-specific phenotypic profile and toward 

a profile more similar to that of genetic syndromes associated with ASD generally. 

Importantly, children with genetic abnormalities (and therefore the children selected as 

matched ASD controls) had lower cognitive and adaptive abilities than the rest of the SSC 

sample. They also tended to receive higher (worse) scores on ASD symptom measures compared 

with the rest of the SSC sample, mirroring decades of similar findings that children with ASD 

with lower IQ usually exhibit more severe impairments than those with higher IQ (27). In fact, 

although we sought to conduct resampling to create multiple control groups, we were only able 

to create one matched ASD control group because of the low number of possible matches (i.e., in 

some cases, it was only possible to generate one match for children with ASD-associated 

mutations). However, the fact that children with ASD-associated mutations were not more 

impaired on measures of social communication deficits and diagnostic certainty when compared 

with relevant controls (i.e., matched on sex, age, and nonverbal IQ) indicates that these 

mutations, as a group, may not actually confer specific risk for ASD-related impairment that is 

greater than the factors conferring risk in the none group (e.g., common variants and 

environmental exposures). This interpretation is supported by the results of the low-confidence 

group comparison (see the online data supplement). Alternatively, other explanatory models 

regarding differential thresholds for behavioral expression of ASD based on heightened risk from 

rare de novo mutations and/or compensatory mechanisms may be relevant to those with 

abnormalities in high-confidence genes and diagnosed with ASD (34, 35). Regardless, continued 

study of early milestone and autism symptom profiles, both in samples of heterogeneous genetic 
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abnormalities and with specific genetic abnormalities, is required to move these findings from 

observational to informing risk assessment for genetic testing in clinics (36). 

Limitations and Future Directions 

Limitations of the SSC data set for these types of comparisons include its rigid exclusion 

criteria for problems that are known to be associated with pathogenic genetic abnormalities, 

including very low mental age and birth trauma (e.g., perinatal incidents, prematurity), exclusion 

of individuals who did not meet stringent ASD criteria on standardized diagnostic instruments, 

and the lack of contemporaneously sampled controls from different families without ASD. Thus, 

we note the possibility that the present findings may vary when the full range of intellectual 

disability and associated features within ASD is represented. That the phenotypic data collection 

was blinded to genetic status is a major advantage over other comparisons between “syndromic” 

and “idiopathic” ASD, in which clinicians’ ratings on standardized instruments or measures of 

diagnostic certainty may be subconsciously affected by biases about, for example, whether ASD 

in fragile X syndrome or tuberous sclerosis is the same as “idiopathic” ASD. Therefore, our 

finding of lower clinician-rated diagnostic certainty for children with genetic abnormalities is 

robust and cannot be explained by clinician bias. 

Another caveat is that although the high-confidence and matched autism control groups 

were matched on age, children in this study spanned a wide age range (4 to 17 years). A 

challenge to genetic studies requiring large samples is that it is difficult to interpret within-

sample comparisons of children spanning the full range of ages and developmental stages. On 

the one hand, results of this study suggest that ASD symptoms are less impairing in those who 

are diagnosed with ASD with de novo mutations in high-confidence genes or loci than in peers 

with equivalent cognitive skills; on the other hand, the pattern of significant differences in early 
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motor milestones (related to lower IQ) may suggest differences in the developmental trajectories 

or patterns of emergence of ASD symptoms. Indeed, the fact that the high-confidence group was 

characterized by later onset of independent walking than the matched autism control group 

indicates a very early phenotypic difference. Delayed walking is more frequently observed in 

individuals with intellectual disability, compared with the general population and compared with 

individuals with ASD, which suggests that it may serve as a marker of propensity toward later 

cognitive impairment. Considering that the high-confidence and matched autism control groups 

were matched on current nonverbal cognitive functioning, presence of this early developmental 

difference provides further evidence for different developmental trajectories (33). Such questions 

underscore the need to obtain genetic data in prospective longitudinal studies. 

A third limitation of the study was the small sample sizes of participants with de novo 

mutations in, or including, the same ASD-associated genes and loci and our subsequent 

combination of all of these participants into a single group. Although a number of group-level 

findings still emerged as significant, Figure 3 clearly illustrates the limitations of combining 

individuals of such diversity. It also exemplifies the variability of phenotypic expression even 

within a known abnormality, already observed in many studies of these specific genetic disorders 

(17). While it would be interesting to make observations about the most common dnLoF 

mutations and dnCNVs, which included four CNV duplications, one CNV deletion, and two 

mutations all previously associated with ASD, there are published “genetics first” cohorts for 

each of these (17, 18, 20, 37-39). These studies describe wide within-cohort variability in 

phenotypic expression, based on type of mutation or CNV characteristics, such as deletion versus 

duplication, size of the error, and the specific genes involved (2). An obvious next step is to 

continue efforts to collect sufficient numbers of cases of specific genetic abnormalities to allow 
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comparisons both within and across disorders, although the feasibility of this approach is limited 

by the relative rarity of any specific mutation. However, as our understanding of the underlying 

molecular neurobiology improves, grouping patients with mutations expected to affect the same 

pathway(s), and therefore potentially leading to a similar phenotypic outcome, may provide 

traction in this regard (40). Relatedly, future studies may identify common variants or familially 

transmitted genetic abnormalities that contribute to these biologically relevant groupings. 

In conclusion, these results highlight the critical need to consider ASD-related symptoms 

and behaviors in the context of overall developmental level. The differences between individuals 

with and without de novo mutations were only revealed when sex, IQ, and age were carefully 

controlled in the analyses. Proper steps must be taken to account for these factors in future 

studies in order to advance our understanding of the range of phenotypic profiles associated with 

genetic findings in ASD. Studies such as these need to be replicated and extended as additional 

genetic abnormalities are found to be associated with ASD with high confidence. Findings from 

these studies will elucidate actual genotype-phenotype differences within ASD, which can be 

used to more carefully phenotype specific animal models for treatment targeting and to inform 

clinical genetic risk assessment and prognosis. 
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FIGURE CAPTIONS 

FIGURE 1. Process for Including Participants From the Simons Simplex Collection in the High-

Confidence and Matched Autism Control Groupsa 

a ASD=autism spectrum disorder; dnLoF=de novo loss of function; dnCNV=de novo copy number variant. 

FIGURE 2. Phenotypic Profiles of Participants in the High-Confidence Group and the Matched 

Autism Control Group Relative to the Full Simons Simplex Collection Samplea 

a Variables were z-normalized using the mean and standard deviation in the full Simons Simplex Collection sample 

as the reference. Mean z scores in each group are plotted. Gray markers indicate a significant difference between 

cases and controls (see Table 1). ADI-R=Autism Diagnostic Interview–Revised; ADOS=Autism Diagnostic 

Observation Schedule; CBCL=Child Behavior Checklist; CSS=calibrated severity score; VABS=Vineland Adaptive 

Behavior Scales, 2nd Edition. 

b For these measures, a higher value is more severe or more atypical. 

FIGURE 3. Profiles of Individual Conditions in the High-Confidence Group and the Matched 

Autism Control Group Relative to the Full Simons Simplex Collection Samplea 

a De novo events found in at least four participants are shown alongside the full high-confidence sample and the 

matched autism control sample. Variables were z-normalized using the mean and standard deviation in the full 

Simons Simplex Collection (SSC) sample, and the colors in the heat map represent z scores above or below the SSC 

mean. Hierarchical clustering, for the purposes of presentation (indicated by the dendrogram on the left-hand side), 

was performed using Ward’s method and Euclidian distance. ADI-R=Autism Diagnostic Interview–Revised; 

ADOS=Autism Diagnostic Observation Schedule; CBCL=Child Behavior Checklist; CSS=calibrated severity score; 

VABS=Vineland Adaptive Behavior Scales, 2nd Edition. 

b For these measures, a higher value is more severe or more atypical. 
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Figure 1: Selection of participants for HC and MAC groups 
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Figure 2:  
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TABLE 1. Demographic Characteristics of Participants in the Simons Simplex Collection 

for Whom Genotyping Array and Whole Exome Sequencing Were Availablea 

 

Characteristic 

None  

(N=1,751) 

Low-Confidence Group 

(N=292) 

High-Confidence Group 

(N=112) 

High-Confidence-Matched 

Autism Control Pairs 

(N=112) 

 N % N % N % N % 

Male 1,546 88 245 84 86 77 86 77 

White 1,375 79 224 77 95 85 86 77 

Hispanic 211 12 36 9 9 8 14 13 

 Mean SD Mean SD Mean SD Mean SD 

Age (months) 107.56 42.56 114.93 44.85 113.10 39.75 112.83 39.40 

Nonverbal IQ 86.28 26.06 80.34 27.31 74.88 23.96 75.46 24.40 
a The matched autism control group consists of participants from the “none” group (no de novo loss of function 

mutations or de novo copy number variants in any gene or locus), matched on sex, age (within 8 months), and 

nonverbal IQ (within 10 points) to the high-confidence group. As a result, the high-confidence–matched autism 

control pairs did not differ significantly in sex, age, or nonverbal IQ. 
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TABLE 2. Phenotypic Comparison of High-Confidence and Matched Autism Controls  

 

   

Matched Autism Control 

Group Versus High-

Confidence Group a  

Group-by-Nonverbal IQ 

Interaction (Nonverbal IQ 

as Moderator) a  

Measure 

Pairs 

(N) 

Matched Autism 

Control Group 

High-Confidence 

Group 

Test 

Statistic p FDR p 

Test 

Statistic p FDR p 

  Mean SD Mean SD       

Age (months) (matching variable) 112 112.83 39.41 113.10 39.75       

Nonverbal IQ (matching variable) 112 75.46 24.00 74.88 23.96       

Verbal IQ 112 68.05 31.18 74.28 29.49 –2.81 0.01 0.02 1.16 0.28 0.75 

Nonverbal IQ minus verbal IQ  112 7.40 16.10 0.61 16.46 3.12 0.002 0.01 1.16 0.28 0.75 

Autism Diagnostic Interview–Revised            

 Age at first words (months) 112 27.28 17.43 29.71 27.18 –0.80 0.43 0.55 3.69 0.06 0.39 

 Age at first phrases (months) 112 49.10 23.16 46.86 31.81 0.71 0.48 0.58 2.56 0.11 0.50 

 Age at onset of walking (months) 112 13.54 3.44 15.79 4.93 –4.28 <0.001 0.001 12.13 0.001 0.02 

Vineland Adaptive Behavior Scales, 2nd 

Edition 

           

 Communication, standard score 112 72.63 12.17 73.49 12.19 –0.86 0.39 0.55 0.46 0.50 0.92 

 Daily living skills, standard score 112 74.25 12.77 72.81 13.22 1.11 0.27 0.43 0.06 0.81 0.97 

 Socialization, standard score 112 69.83 11.51 69.30 12.20 0.44 0.66 0.71 0.04 0.84 0.97 

 Adaptive behavior composite, standard 

score 

112 70.82 10.53 69.72 10.94 1.15 0.25 0.42 0.01 0.93 0.97 

Peabody Picture Vocabulary Test, 

standard score 

109 74.86 31.24 81.77 25.23 –3.32 0.001 0.01 10.93 0.001 0.02 

Purdue pegboard task            

 Both hands, raw score 70 6.14 3.41 6.21 3.33 –0.20 0.85 0.85 0.59 0.44 0.92 

 Dominant hand, raw score 70 8.81 2.78 9.04 3.10 –0.64 0.52 0.61 0.10 0.75 0.96 

 Nondominant, raw score 70 7.77 3.50 8.39 3.59 –1.38 0.17 0.34 0.11 0.74 0.96 

Child Behavior Checklist            

 Internalizing scale, total T score 111 58.88 9.15 60.46 8.62 –1.33 0.19 0.35 0.40 0.53 0.92 

 Externalizing scale, total T score 111 55.70 10.57 57.85 11.60 –1.44 0.15 0.32 0.15 0.70 0.96 

Social Responsiveness Scale, total T score 111 81.34 9.93 80.34 11.13 0.71 0.48 0.58 0.01 0.92 0.97 

Autism Diagnostic Interview–Revised            

 Social domain, total score 112 22.43 5.35 20.15 5.43 3.43 0.001 0.01 0.18 0.67 0.96 

 Nonverbal communication, total score 112 10.01 3.47 9.09 3.34 2.25 0.03 0.07 1.11 0.29 0.75 

 Restricted and repetitive behaviors, 

total score 

112 6.76 2.59 6.49 2.59 0.84 0.40 0.55 0.01 0.91 0.97 

Autism Diagnostic Observation Schedule            

 Total, calibrated severity score 112 7.79 1.53 7.29 1.82 1.26 0.21 0.37 0.54 0.46 0.92 

 Social affect, calibrated severity score 109 7.47 1.69 7.07 1.84 2.23 0.03 0.07 2.48 0.12 0.50 

 Restricted and repetitive behaviors, 

calibrated severity score 

109 8.18 1.76 7.86 1.98 1.65 0.10 0.25 2.38 0.12 0.50 

Overall ASD diagnostic certainty 112 13.83 1.98 12.55 2.60 4.25 <0.001 0.001 1.82 0.18 0.62 

  N % N %       

Autism Diagnostic Observation Schedule 

module b  

112     8.63 0.003 0.01 0.20 0.65 0.96 

 1  31 28 19 17       

 2  24 21 20 18       

 3  53 47 71 63       

 4  4 4 2 2       

High ASD diagnostic certainty c 112 97 87 71 63 13.20 0.003 0.003 0.18 0.67 0.96 

Family history of major psychiatric 96 45 47 43 45 0.10 0.76 0.79 0.94 0.33 0.77 
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Matched Autism Control 

Group Versus High-

Confidence Group a  

Group-by-Nonverbal IQ 

Interaction (Nonverbal IQ 

as Moderator) a  

Measure 

Pairs 

(N) 

Matched Autism 

Control Group 

High-Confidence 

Group 

Test 

Statistic p FDR p 

Test 

Statistic p FDR p 

problems d 

Seizures 112 6 5 13 12 2.45 0.12 0.28 4.34 0.04 0.35 

Language deficit 112 40 36 24 21 7.24 0.01 0.02 0.00 0.97 0.97 
a In order to maintain the integrity of our matching procedure, if only one member of a pair was missing data on a 

given measure, the partner’s data were also set to missing. The test statistic depends on the type of dependent 

variable; continuous variables (described with means) have an associated t-statistic, while categorical variables 

(described with proportions) have an associated 2 statistic. “Nonverbal IQ as moderator” refers to the interaction 

between group (high-confidence group versus matched autism control group) and nonverbal IQ in predicting the 

dependent variable and informs the question of whether group differences depend on cognitive level. FDR=false 

discovery rate. 
b Module type was collapsed from 1, 2, 3, 4 to modules 1 and 2 versus modules 3 and 4 for analysis. 
c Certainty score was greater than 12, operationalized in the study as “high certainty”. 
d Controlling for ethnicity. 


