79 research outputs found

    Yes, I Adopted a Cat—But She’s Done Her Share of Taking Care of Me, Too

    Get PDF
    Growing up, I was one of the only kids I knew who never owned a pet. Well, I did raise a couple of betta fish over the years, each named after players for the New York Giants. Nonetheless, I always longed for a furry friend to call my own

    Elective Recital: Nicole Wills, mezzo-soprano

    Get PDF

    Face Your Challenges Like a Linebacker—And Don’t Be Afraid to Blitz

    Get PDF
    I traveled to New York last summer to hear some inspirational women at Her Conference 2018, a development event for college women and recent graduates. I arrived excited to soak up as much information as I possibly could—especially from the speakers who were currently living out my dream career as a writer—and I left with a notebook filled with ideas and quotes to inspire me

    I’m About to Graduate – But I’ll Never Stop Learning

    Get PDF
    I have been a student as long as I can remember. My earliest memories are being with my childhood friends in our kindergarten classroom

    Sport gifted pupils

    Get PDF
    Katedra speciální pedagogikyFaculty of EducationPedagogická fakult

    Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries.

    Get PDF
    Quantum dots (QD) have unique electronic and optical properties promoting biotechnological advances. However, our understanding of the toxicological structure-activity relationships remains limited. This study aimed to determine the biological impact of varying nanomaterial surface chemistry by assessing the interaction of QD with either a negative (carboxyl), neutral (hexadecylamine; HDA) or positive (amine) polymer coating with human lymphoblastoid TK6 cells. Following QD physico-chemical characterisation, cellular uptake was quantified by optical and electron microscopy. Cytotoxicity was evaluated and genotoxicity was characterised using the micronucleus assay (gross chromosomal damage) and the HPRT forward mutation assay (point mutagenicity). Cellular damage mechanisms were also explored, focusing on oxidative stress and mitochondrial damage. Cell uptake, cytotoxicity and genotoxicity were found to be dependent on QD surface chemistry. Carboxyl-QD demonstrated the smallest agglomerate size and greatest cellular uptake, which correlated with a dose dependent increase in cytotoxicity and genotoxicity. Amine-QD induced minimal cellular damage, while HDA-QD promoted substantial induction of cell death and genotoxicity. However, HDA-QD were not internalised by the cells and the damage they caused was most likely due to free cadmium release caused by QD dissolution. Oxidative stress and induced mitochondrial reactive oxygen species were only partially associated with cytotoxicity and genotoxicity induced by the QD, hence were not the only mechanisms of importance. Colloidal stability, nanoparticle (NP) surface chemistry, cellular uptake levels and the intrinsic characteristics of the NPs are therefore critical parameters impacting genotoxicity induced by QD

    Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints.

    Get PDF
    Toxicity of nanoparticles (NPs) is often correlated with the physicochemical characteristics of the materials. However, some discrepancies are noted in in-vitro studies on quantum dots (QDs) with similar physicochemical properties. This is partly related to variations in cell type. In this study, we show that epithelial (BEAS-2B), fibroblast (HFF-1), and lymphoblastoid (TK6) cells show different biological responses following exposure to QDs. These cells represented the 3 main portals of NP exposure: bronchial, skin, and circulatory. The uptake and toxicity of negatively and positively charged CdSe:ZnS QDs of the same core size but with different surface chemistries (carboxyl or amine polymer coatings) were investigated in full and reduced serum containing media following 1 and 3 cell cycles. Following thorough physicochemical characterization, cellular uptake, cytotoxicity, and gross chromosomal damage were measured. Cellular damage mechanisms in the form of reactive oxygen species and the expression of inflammatory cytokines IL-8 and TNF-α were assessed. QDs uptake and toxicity significantly varied in the different cell lines. BEAS-2B cells demonstrated the highest level of QDs uptake yet displayed a strong resilience with minimal genotoxicity following exposure to these NPs. In contrast, HFF-1 and TK6 cells were more susceptible to toxicity and genotoxicity, respectively, as a result of exposure to QDs. Thus, this study demonstrates that in addition to nanomaterial physicochemical characterization, a clear understanding of cell type-dependent variation in uptake coupled to the inherently different capacities of the cell types to cope with exposure to these exogenous materials are all required to predict genotoxicity

    Characterizing Nanoparticles in Biological Matrices: Tipping Points in Agglomeration State and Cellular Delivery In Vitro.

    Get PDF
    Understanding the delivered cellular dose of nanoparticles is imperative in nanomedicine and nanosafety, yet is known to be extremely complex because of multiple interactions between nanoparticles, their environment, and the cells. Here, we use 3-D reconstruction of agglomerates preserved by cryogenic snapshot sampling and imaged by electron microscopy to quantify the "bioavailable dose" that is presented at the cell surface and formed by the process of individual nanoparticle sequestration into agglomerates in the exposure media. Critically, using 20 and 40 nm carboxylated polystyrene-latex and 16 and 85 nm silicon dioxide nanoparticles, we show that abrupt, dose-dependent "tipping points" in agglomeration state can arise, subsequently affecting cellular delivery and increasing toxicity. These changes are triggered by shifts in the ratio of the total nanoparticle surface area to biomolecule abundance, with the switch to a highly agglomerated state effectively changing the test article midassay, challenging the dose-response paradigm for nanosafety experiments. By characterizing nanoparticle numbers per agglomerate, we show these tipping points can lead to the formation of extreme agglomeration states whereby 90% of an administered dose is contained and delivered to the cells by just the top 2% of the largest agglomerates. We thus demonstrate precise definition, description, and comparison of the nanoparticle dose formed in different experimental environments and show that this description is critical to understanding cellular delivery and toxicity. We further empirically "stress-test" the commonly used dynamic light scattering approach, establishing its limitations to present an analysis strategy that significantly improves the usefulness of this popular nanoparticle characterization technique

    Commercial production of Florida pompano (Trachinotus carolinus) larvae at low salinity induces variable changes in whole-larvae microbial diversity, gene expression, and gill histopathology

    Get PDF
    IntroductionSalinity presents economic and technical challenges in land-based recirculating aquaculture systems (RAS) in the U.S. warm water marine finfish aquaculture industry. Many studies have shown euryhaline fish reared at salinities closer to their iso-osmotic salinity can yield enhanced production performance as well as potential reduced costs to farms. However, there is potential for osmotic stress in fish larvae to negatively impact larvae microbiome and innate immune system. Florida pompano (Trachinotus carolinus) is a popular sportfish has been targeted for land-based RAS due to its impressive market value and euryhaline capacity. This study investigated the impacts of rearing Florida pompano larvae at salinities closer to their iso-osmotic salinity.Materials and methodsLarvae were cultured at 10, 20, and 30 ppt in triplicates, and larvae samples were collected for histopathology, microbiome, and whole transcriptomics analysis every three days from hatching until the time of weaning (24 days post hatch [DPH]). Water samples were also taken for microbiome analysis on every other larval sampling day. DiscussionThese changes were driven more by metamorphosis, causing an increase in expression of antioxidant genes (cat, gss, gsto1, and scara3) than by the presence of potentially pathogenic genera, which failed to induce an immune response (low or unchanged expression of downstream elements of the NOD1 or TLR5 pathways). These findings provide baseline information on Florida pompano low salinity tolerance in larviculture during early developmental stages. In addition, we have shown minimal effects on the immune system at salinities as low as 10 ppt. This work has important implications for larval health management and can be used to refine and direct future research regarding improving commercial production of warm water marine specie

    In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials.

    Get PDF
    BACKGROUND: It is well established that toxicological evaluation of engineered nanomaterials (NMs) is vital to ensure the health and safety of those exposed to them. Further, there is a distinct need for the development of advanced physiologically relevant in vitro techniques for NM hazard prediction due to the limited predictive power of current in vitro models and the unsustainability of conducting nano-safety evaluations in vivo. Thus, the purpose of this study was to develop alternative in vitro approaches to assess the potential of NMs to induce genotoxicity by secondary mechanisms. RESULTS: This was first undertaken by a conditioned media-based technique, whereby cell culture media was transferred from differentiated THP-1 (dTHP-1) macrophages treated with Îł-Fe2O3 or Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) to the bronchial cell line 16HBE14o-. Secondly construction and SPION treatment of a co-culture model comprising of 16HBE14o- cells and dTHP-1 macrophages. For both of these approaches no cytotoxicity was detected and chromosomal damage was evaluated by the in vitro micronucleus assay. Genotoxicity assessment was also performed using 16HBE14o- monocultures, which demonstrated only Îł-Fe2O3 nanoparticles to be capable of inducing chromosomal damage. In contrast, immune cell conditioned media and dual cell co-culture SPION treatments showed both SPION types to be genotoxic to 16HBE14o- cells due to secondary genotoxicity promoted by SPION-immune cell interaction. CONCLUSIONS: The findings of the present study demonstrate that the approach of using single in vitro cell test systems precludes the ability to consider secondary genotoxic mechanisms. Consequently, the use of multi-cell type models is preferable as they better mimic the in vivo environment and thus offer the potential to enhance understanding and detection of a wider breadth of potential damage induced by NMs
    • …
    corecore