17,383 research outputs found

    Experimental study of acoustic loads on an upper-surface-blown STOL airplane configuration

    Get PDF
    Fluctuating pressure levels were measured on the flap and fuselage of an upper-surface-blown jet-flap airplane configuration in a wind tunnel. The model tested had turbofan engines with a bypass ratio of 3 and a thrust rating of 10 kN. Rectangular nozzles were mounted flush with the upper surface at 35 percent of the wing chord. Test parameters were flap deflection angle, jet impingement angle, angle of attack, free-stream velocity, spanwise location of the engine, and jet dynamic pressure. Load levels were high throughout the jet impingement region, with the highest levels (about 159 dB) occurring on the fuselage and near the knee of the flap. The magnitude of the forward-velocity effect appeared to depend upon the ratio of free-stream and jet velocities. Good agreement was obtained between fluctuating pressure spectra measured at jet dynamic pressures of 7 and 22 kPa when the spectra were scaled by nondimensional functions of dynamic pressure, velocity, and the empirical relationship between dynamic pressure and overall fluctuating pressure level

    Acoustic-loads research for powered-lift configurations

    Get PDF
    Data presented from large-scale model tests with jet engines having thrusts of 9 kN (2000 lb) and 36 kN (8000 lb) include acoustic loads for an externally blown wing and flap induced by a TF34 jet engine, an upper surface blown (USB) aircraft model in a wind tunnel, and two USB models in static tests. Comparisons of these results with results from acoustic loads studies on configurations of other sizes are made and the implications of these results on interior noise and acoustic fatigue are discussed

    Effects of aircraft noise on flight and ground structures

    Get PDF
    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft

    Static inverters which sum a plurality of waves Patent

    Get PDF
    Describing static inverter with single or multiple phase outpu

    Towards the graviton from spinfoams: higher order corrections in the 3d toy model

    Full text link
    We consider the recent calculation gr-qc/0508124 of the graviton propagator in the spinfoam formalism. Within the 3d toy model introduced in gr-qc/0512102, we test how the spinfoam formalism can be used to construct the perturbative expansion of graviton amplitudes. Although the 3d graviton is a pure gauge, one can choose to work in a gauge where it is not zero and thus reproduce the structure of the 4d perturbative calculations. We compute explicitly the next to leading and next to next to leading orders, corresponding to one-loop and two-loop corrections. We show that while the first arises entirely from the expansion of the Regge action around the flat background, the latter receives contributions from the microscopic, non Regge-like, quantum geometry. Surprisingly, this new contribution reduces the magnitude of the next to next to leading order. It thus appears that the spinfoam formalism is likely to substantially modify the conventional perturbative expansion at higher orders. This result supports the interest in this approach. We then address a number of open issues in the rest of the paper. First, we discuss the boundary state ansatz, which is a key ingredient in the whole construction. We propose a way to enhance the ansatz in order to make the edge lengths and dihedral angles conjugate variables in a mathematically well-defined way. Second, we show that the leading order is stable against different choices of the face weights of the spinfoam model; the next to leading order, on the other hand, is changed in a simple way, and we show that the topological face weight minimizes it. Finally, we extend the leading order result to the case of a regular, but not equilateral, tetrahedron.Comment: 24 pages, many figure

    Complex networks created by aggregation

    Get PDF
    We study aggregation as a mechanism for the creation of complex networks. In this evolution process vertices merge together, which increases the number of highly connected hubs. We study a range of complex network architectures produced by the aggregation. Fat-tailed (in particular, scale-free) distributions of connections are obtained both for networks with a finite number of vertices and growing networks. We observe a strong variation of a network structure with growing density of connections and find the phase transition of the condensation of edges. Finally, we demonstrate the importance of structural correlations in these networks.Comment: 12 pages, 13 figure
    • …
    corecore