11,939 research outputs found
An overview of NASA intermittent combustion engine research
This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts the stratified-charge, multi-fuel rotary, and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants
Thermal and Non-thermal Plasmas in the Galaxy Cluster 3C 129
We describe new Chandra spectroscopy data of the cluster which harbors the
prototypical "head tail" radio galaxy 3C 129 and the weaker radio galaxy 3C
129.1. We combined the Chandra data with Very Large Array (VLA) radio data
taken at 0.33, 5, and 8 GHz (archival data) and 1.4 GHz (new data). We also
obtained new HI observations at the Dominion Radio Astrophysical Observatory
(DRAO) to measure the neutral Hydrogen column density in the direction of the
cluster with arcminute angular resolution. The Chandra observation reveals
extended X-ray emission from the radio galaxy 3C 129.1 with a total luminosity
of 1.5E+41 erg/s. The X-ray excess is resolved into an extended central source
of ~2 arcsec (1 kpc) diameter and several point sources with an individual
luminosity up to 2.1E+40 erg/s. In the case of the radio galaxy 3C 129, the
Chandra observation shows, in addition to core and jet X-ray emission reported
in an earlier paper, some evidence for extended, diffuse X-ray emission from a
region east of the radio core. The 12 arcsec x 36 arcsec (6 kpc x 17 kpc)
region lies "in front" of the radio core, in the same direction into which the
radio galaxy is moving. We use the radio and X-ray data to study in detail the
pressure balance between the non-thermal radio plasma and the thermal Intra
Cluster Medium (ICM) along the tail of 3C 129 which extends over 15 arcmin (427
kpc). Depending on the assumed lower energy cutoff of the electron energy
spectrum, the minimum pressure of the radio plasma lies a factor of between 10
and 40 below the ICM pressure for a large part of the tail. We discuss several
possibilities to explain the apparent pressure mismatch.Comment: Accepted for publication in MNRAS. Refereed manuscript. 14 pages, 8
figures, additional panel of Fig. 3 shows asymmetric ICM distributio
By the Old Rustic Bridge : Sweetheart Nell
https://digitalcommons.library.umaine.edu/mmb-vp/1192/thumbnail.jp
Winter wheat: A model for the simulation of growth and yield in winter wheat
The basic ideas and constructs for a general physical/physiological process level winter wheat simulation model are documented. It is a materials balance model which calculates daily increments of photosynthate production and respiratory losses in the crop canopy. The partitioning of the resulting dry matter to the active growing tissues in the plant each day, transpiration and the uptake of nitrogen from the soil profile are simulated. It incorporates the RHIZOS model which simulates, in two dimensions, the movement of water, roots, and soluble nutrients through the soil profile. It records the time of initiation of each of the plant organs. These phenological events are calculated from temperature functions with delays resulting from physiological stress. Stress is defined mathematically as an imbalance in the metabolite supply; demand ratio. Physiological stress is also the basis for the calculation of rates of tiller and floret abortion. Thus, tillering and head differentiation are modeled as the resulants of the two processes, morphogenesis and abortion, which may be occurring simulaneously
Crack Front Waves and the dynamics of a rapidly moving crack
Crack front waves are localized waves that propagate along the leading edge
of a crack. They are generated by the interaction of a crack with a localized
material inhomogeneity. We show that front waves are nonlinear entities that
transport energy, generate surface structure and lead to localized velocity
fluctuations. Their existence locally imparts inertia, which is not
incorporated in current theories of fracture, to initially "massless" cracks.
This, coupled to crack instabilities, yields both inhomogeneity and scaling
behavior within fracture surface structure.Comment: Embedded Latex file including 4 figure
Effects of propeller rotation direction on airplane interior noise levels
Interior noise measurements for upsweeping and downsweeping movement of the propeller blade tips past the fuselage were made on a twin-engine airplane and on two simplified fuselage models. Changes in interior noise levels of as much as 8 dB reversal of propeller rotation direction were measured for some configurations and test conditions
Non-degenerate four-wave mixing in rubidium vapor: transient regime
We investigate the transient response of the generated light from Four-Wave
Mixing (FWM) in the diamond configuration using a step-down field excitation.
The transients show fast decay times and oscillations that depend on the
detunings and intensities of the fields. A simplified model taking into account
the thermal motion of the atoms, propagation, absorption and dispersion effects
shows qualitative agreement with the experimental observations with the energy
levels in rubidium (5S1/2, 5P1/2, 5P3/2 and 6S1/2). The atomic polarization
comes from all the contributions of different velocity classes of atoms in the
ensemble modifying dramatically the total transient behavior of the light from
FWM.Comment: 11 pages, 11 figures, to be published in Physical Review
DA495 - an aging pulsar wind nebula
We present a radio continuum study of the pulsar wind nebula (PWN) DA 495
(G65.7+1.2), including images of total intensity and linear polarization from
408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations
with the Effelsberg 100-m Radio Telescope. Removal of flux density
contributions from a superimposed \ion{H}{2} region and from compact
extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz,
with a spectral index below the break and
above it (). The
spectral break is more than three times lower in frequency than the lowest
break detected in any other PWN. The break in the spectrum is likely the result
of synchrotron cooling, and DA 495, at an age of 20,000 yr, may have
evolved from an object similar to the Vela X nebula, with a similarly energetic
pulsar. We find a magnetic field of 1.3 mG inside the nebula. After
correcting for the resulting high internal rotation measure, the magnetic field
structure is quite simple, resembling the inner part of a dipole field
projected onto the plane of the sky, although a toroidal component is likely
also present. The dipole field axis, which should be parallel to the spin axis
of the putative pulsar, lies at an angle of {\sim}50\degr east of the North
Celestial Pole and is pointing away from us towards the south-west. The upper
limit for the radio surface brightness of any shell-type supernova remnant
emission around DA 495 is OAWatt
m Hz sr (assuming a radio spectral index of ), lower than the faintest shell-type remnant known to date.Comment: 25 pages, accepted by Ap
Neon Abundances from a Spitzer/IRS Survey of Wolf-Rayet Stars
We report on neon abundances derived from {\it Spitzer} high resolution
spectral data of eight Wolf-Rayet (WR) stars using the forbidden line of
[\ion{Ne}{3}] 15.56 microns. Our targets include four WN stars of subtypes
4--7, and four WC stars of subtypes 4--7. We derive ion fraction abundances
of Ne^{2+} for the winds of each star. The ion fraction abundance is a
product of the ionization fraction in stage i and the abundance by
number of element E relative to all nuclei. Values generally
consistent with solar are obtained for the WN stars, and values in excess of
solar are obtained for the WC stars.Comment: to appear in Astrophysical Journa
- …