3,122 research outputs found
Open-source lab hardware: Driver and temperature controller for high compliance voltage, fiber-coupled butterfly lasers
This article describes the development of a compact, relatively low-cost, high compliance voltage laser driver that can provide the constant optical laser output required for a range of applications. The system contains an integrated, high-precision temperature controller that can be implemented with butterfly-style lasers containing an internal thermoelectric cooler. The laser parameters can be controlled manually or via an onboard microcontroller. Additionally, an adjustable over-current protection circuit safeguards the laser diode from potential damage
Open-source lab hardware: A versatile microfluidic control and sensor platform
Here we describe a completely integrated and customizable microfluidic control and sensing architecture that can be readily implemented for laboratory or portable chemical or biological control and sensing applications. The compact platform enables control of 32 solenoid valves, a multitude of pumps and motors, a thermo-electric controller, a pressure controller, and a high voltage power supply. It also features two temperature probe interfaces, one relative humidity and ambient temperature sensor, two pressure sensors, and interfaces to an electrical conductivity sensor, flow sensor, and a bubble detector. The platform can be controlled via an onboard microcontroller and requires no proprietary software.
Keywords: Capillary electrophoresis; Chemical analysis; Fluidic sensing; Lab automation; Microfluidic sample handling; Valve controller
Properties of Hot Stars in the Wolf-Rayet galaxy NGC5253 from ISO Spectroscopy
ISO-SWS spectroscopy of the WR galaxy NGC5253 is presented, and analysed to
provide estimates of its hot young star population. Our approach differs from
previous investigations in that we are able to distinguish between the regions
in which different infrared fine-structure lines form, using complementary
ground-based observations. The high excitation nebular [SIV] emission is formed
in a very compact region, which we attribute to the central super-star-nucleus,
and lower excitation [NeII] nebular emission originates in the galactic core.
We use photo-ionization modelling coupled with the latest theoretical O-star
flux distributions to derive effective stellar temperatures and ionization
parameters of Teff>38kK, logQ=8.25 for the compact nucleus, with Teff=35kK,
logQ<8 for the larger core. Results are supported by more sophisticated
calculations using evolutionary synthesis models. We assess the contribution
that Wolf-Rayet stars may make to highly ionized nebular lines (e.g. [OIV]).
From our Br(alpha) flux, the 2" nucleus contains the equivalent of
approximately 1000 O7V star equivalents and the starburst there is 2-3Myr old;
the 20" core contains about 2500 O7V star equivalents, with a representative
age of 5Myr. The Lyman ionizing flux of the nucleus is equivalent to the 30
Doradus region. These quantities are in good agreement with the observed mid-IR
dust luminosity of 7.8x10^8 L(sun) Since this structure of hot clusters
embedded in cooler emission may be common in dwarf starbursts, observing a
galaxy solely with a large aperture may result in confusion. Neglecting the
spatial distribution of nebular emission in NGC5253, implies `global' stellar
temperatures (or ages) of 36kK (4.8Myr) and 39kK (2.9 or 4.4Myr) from the
observed [NeIII/II] and [SIV/III] line ratios, assuming logQ=8.Comment: 16 pages, 7 figures, uses mn.sty, to appear in MNRA
Automated, Ultra-Sterile Solid Sample Handling and Analysis on a Chip
There are no existing ultra-sterile lab-on-a-chip systems that can accept solid samples and perform complete chemical analyses without human intervention. The proposed solution is to demonstrate completely automated lab-on-a-chip manipulation of powdered solid samples, followed by on-chip liquid extraction and chemical analysis. This technology utilizes a newly invented glass micro-device for solid manipulation, which mates with existing lab-on-a-chip instrumentation. Devices are fabricated in a Class 10 cleanroom at the JPL MicroDevices Lab, and are plasma-cleaned before and after assembly. Solid samples enter the device through a drilled hole in the top. Existing micro-pumping technology is used to transfer milligrams of powdered sample into an extraction chamber where it is mixed with liquids to extract organic material. Subsequent chemical analysis is performed using portable microchip capillary electrophoresis systems (CE). These instruments have been used for ultra-highly sensitive (parts-per-trillion, pptr) analysis of organic compounds including amines, amino acids, aldehydes, ketones, carboxylic acids, and thiols. Fully autonomous amino acid analyses in liquids were demonstrated; however, to date there have been no reports of completely automated analysis of solid samples on chip. This approach utilizes an existing portable instrument that houses optics, high-voltage power supplies, and solenoids for fully autonomous microfluidic sample processing and CE analysis with laser-induced fluorescence (LIF) detection. Furthermore, the entire system can be sterilized and placed in a cleanroom environment for analyzing samples returned from extraterrestrial targets, if desired. This is an entirely new capability never demonstrated before. The ability to manipulate solid samples, coupled with lab-on-a-chip analysis technology, will enable ultraclean and ultrasensitive end-to-end analysis of samples that is orders of magnitude more sensitive than the ppb goal given in the Science Instruments
Fabricating PFPE Membranes for Capillary Electrophoresis
A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist)
BOSS-LDG: A Novel Computational Framework that Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery
We present a novel computational framework that connects Blue Waters, the
NSF-supported, leadership-class supercomputer operated by NCSA, to the Laser
Interferometer Gravitational-Wave Observatory (LIGO) Data Grid via Open Science
Grid technology. To enable this computational infrastructure, we configured,
for the first time, a LIGO Data Grid Tier-1 Center that can submit
heterogeneous LIGO workflows using Open Science Grid facilities. In order to
enable a seamless connection between the LIGO Data Grid and Blue Waters via
Open Science Grid, we utilize Shifter to containerize LIGO's workflow software.
This work represents the first time Open Science Grid, Shifter, and Blue Waters
are unified to tackle a scientific problem and, in particular, it is the first
time a framework of this nature is used in the context of large scale
gravitational wave data analysis. This new framework has been used in the last
several weeks of LIGO's second discovery campaign to run the most
computationally demanding gravitational wave search workflows on Blue Waters,
and accelerate discovery in the emergent field of gravitational wave
astrophysics. We discuss the implications of this novel framework for a wider
ecosystem of Higher Performance Computing users.Comment: 10 pages, 10 figures. Accepted as a Full Research Paper to the 13th
IEEE International Conference on eScienc
Slopes To Prevent Trapping of Bubbles in Microfluidic Channels
The idea of designing a microfluidic channel to slope upward along the direction of flow of the liquid in the channel has been conceived to help prevent trapping of gas bubbles in the channel. In the original application that gave rise to this idea, the microfluidic channels are parts of micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. It is necessary to prevent trapping of gas bubbles in these devices because uninterrupted liquid pathways are essential for sustaining the electrical conduction and flows that are essential for CE. The idea is also applicable to microfluidic devices that may be developed for similar terrestrial microCE biotechnological applications or other terrestrial applications in which trapping of bubbles in microfluidic channels cannot be tolerated. A typical microCE device in the original application includes, among other things, multiple layers of borosilicate float glass wafers. Microfluidic channels are formed in the wafers, typically by use of wet chemical etching. The figure presents a simplified cross section of part of such a device in which the CE channel is formed in the lowermost wafer (denoted the channel wafer) and, according to the present innovation, slopes upward into a via hole in another wafer (denoted the manifold wafer) lying immediately above the channel wafer. Another feature of the present innovation is that the via hole in the manifold wafer is made to taper to a wider opening at the top to further reduce the tendency to trap bubbles. At the time of reporting the information for this article, an effort to identify an optimum technique for forming the slope and the taper was in progress. Of the techniques considered thus far, the one considered to be most promising is precision milling by use of femtosecond laser pulses. Other similar techniques that may work equally well are precision milling using a focused ion beam, or a small diamond-tipped drill bit
Work restructuring and changing craft identity: the Tale of the Disaffected Weavers (or what happens when the rug is pulled from under your feet)
This article explores the changes in worker identity that can occur during manufacturing restructuring – specifically those linked to the declining status of craft work – through an in-depth case study of Weaveco, a UK carpet manufacturer. An analysis of changes in the labour process is followed by employee reactions centred on the demise of the traditional craft identity of male carpet weavers. The voices of the weavers dramatize the tensions involved in reconstructing their masculine identity, and we consider the implications this has for understanding gendered work relations
- …