124 research outputs found

    The Chemical Translation Service—a web-based tool to improve standardization of metabolomic reports

    Get PDF
    Summary: Metabolomic publications and databases use different database identifiers or even trivial names which disable queries across databases or between studies. The best way to annotate metabolites is by chemical structures, encoded by the International Chemical Identifier code (InChI) or InChIKey. We have implemented a web-based Chemical Translation Service that performs batch conversions of the most common compound identifiers, including CAS, CHEBI, compound formulas, Human Metabolome Database HMDB, InChI, InChIKey, IUPAC name, KEGG, LipidMaps, PubChem CID+SID, SMILES and chemical synonym names. Batch conversion downloads of 1410 CIDs are performed in 2.5 min. Structures are automatically displayed

    OSCAR4: a flexible architecture for chemical text-mining

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of named entities and data in chemistry publications, has been developed since 2002. Recent work has resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This library features a modular API (based on reduction of surface coupling) that permits client programmers to easily incorporate it into external applications. OSCAR4 offers a domain-independent architecture upon which chemistry specific text-mining tools can be built, and its development and usage are discussed.Peer Reviewe

    Bioclipse-R: integrating management and visualization of life science data with statistical analysis

    Get PDF
    SUMMARY: Bioclipse, a graphical workbench for the life sciences, provides functionality for managing and visualizing life science data. We introduce Bioclipse-R, which integrates Bioclipse and the statistical programming language R. The synergy between Bioclipse and R is demonstrated by the construction of a decision support system for anticancer drug screening and mutagenicity prediction, which shows how Bioclipse-R can be used to perform complex tasks from within a single software system. Availability and implementation: Bioclipse-R is implemented as a set of Java plug-ins for Bioclipse based on the R-package rj. Source code and binary packages are available from https://github.com/bioclipse and http://www.bioclipse.net/bioclipse-r, respectively. CONTACT: [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Computational toxicology using the OpenTox application programming interface and Bioclipse

    Get PDF
    BACKGROUND: Toxicity is a complex phenomenon involving the potential adverse effect on a range of biological functions. Predicting toxicity involves using a combination of experimental data (endpoints) and computational methods to generate a set of predictive models. Such models rely strongly on being able to integrate information from many sources. The required integration of biological and chemical information sources requires, however, a common language to express our knowledge ontologically, and interoperating services to build reliable predictive toxicology applications. FINDINGS: This article describes progress in extending the integrative bio- and cheminformatics platform Bioclipse to interoperate with OpenTox, a semantic web framework which supports open data exchange and toxicology model building. The Bioclipse workbench environment enables functionality from OpenTox web services and easy access to OpenTox resources for evaluating toxicity properties of query molecules. Relevant cases and interfaces based on ten neurotoxins are described to demonstrate the capabilities provided to the user. The integration takes advantage of semantic web technologies, thereby providing an open and simplifying communication standard. Additionally, the use of ontologies ensures proper interoperation and reliable integration of toxicity information from both experimental and computational sources. CONCLUSIONS: A novel computational toxicity assessment platform was generated from integration of two open science platforms related to toxicology: Bioclipse, that combines a rich scriptable and graphical workbench environment for integration of diverse sets of information sources, and OpenTox, a platform for interoperable toxicology data and computational services. The combination provides improved reliability and operability for handling large data sets by the use of the Open Standards from the OpenTox Application Programming Interface. This enables simultaneous access to a variety of distributed predictive toxicology databases, and algorithm and model resources, taking advantage of the Bioclipse workbench handling the technical layers

    Bioclipse: an open source workbench for chemo- and bioinformatics

    Get PDF
    BACKGROUND: There is a need for software applications that provide users with a complete and extensible toolkit for chemo- and bioinformatics accessible from a single workbench. Commercial packages are expensive and closed source, hence they do not allow end users to modify algorithms and add custom functionality. Existing open source projects are more focused on providing a framework for integrating existing, separately installed bioinformatics packages, rather than providing user-friendly interfaces. No open source chemoinformatics workbench has previously been published, and no sucessful attempts have been made to integrate chemo- and bioinformatics into a single framework. RESULTS: Bioclipse is an advanced workbench for resources in chemo- and bioinformatics, such as molecules, proteins, sequences, spectra, and scripts. It provides 2D-editing, 3D-visualization, file format conversion, calculation of chemical properties, and much more; all fully integrated into a user-friendly desktop application. Editing supports standard functions such as cut and paste, drag and drop, and undo/redo. Bioclipse is written in Java and based on the Eclipse Rich Client Platform with a state-of-the-art plugin architecture. This gives Bioclipse an advantage over other systems as it can easily be extended with functionality in any desired direction. CONCLUSION: Bioclipse is a powerful workbench for bio- and chemoinformatics as well as an advanced integration platform. The rich functionality, intuitive user interface, and powerful plugin architecture make Bioclipse the most advanced and user-friendly open source workbench for chemo- and bioinformatics. Bioclipse is released under Eclipse Public License (EPL), an open source license which sets no constraints on external plugin licensing; it is totally open for both open source plugins as well as commercial ones. Bioclipse is freely available at

    WENDI: A tool for finding non-obvious relationships between compounds and biological properties, genes, diseases and scholarly publications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, there has been a huge increase in the amount of publicly-available and proprietary information pertinent to drug discovery. However, there is a distinct lack of data mining tools available to harness this information, and in particular for knowledge discovery across multiple information sources. At Indiana University we have an ongoing project with Eli Lilly to develop web-service based tools for integrative mining of chemical and biological information. In this paper, we report on the first of these tools, called WENDI (Web Engine for Non-obvious Drug Information) that attempts to find non-obvious relationships between a query compound and scholarly publications, biological properties, genes and diseases using multiple information sources.</p> <p>Results</p> <p>We have created an aggregate web service that takes a query compound as input, calls multiple web services for computation and database search, and returns an XML file that aggregates this information. We have also developed a client application that provides an easy-to-use interface to this web service. Both the service and client are publicly available.</p> <p>Conclusions</p> <p>Initial testing indicates this tool is useful in identifying potential biological applications of compounds that are not obvious, and in identifying corroborating and conflicting information from multiple sources. We encourage feedback on the tool to help us refine it further. We are now developing further tools based on this model.</p

    The role of FAIR nanosafety data and nanoinformatics in achieving the UN sustainable development goals: the NanoCommons experience†

    Get PDF
    The increasing focus on open and FAIR (Findable, Accessible, Interoperable and Re-useable) data is driving a step-change in how research communities and governments think about data and knowledge, and the potential for re-use of data. It has long been recognised that international data sharing is essential for regulatory harmonisation and commercialisation, via the Mutual Acceptance of Data (MAD) principle of the Organisation for Economic Cooperation and Development (OECD) for example. However, it is interesting to note that despite the power of data and data-driven software to support the achievement of the United Nations Sustainable Development Goals (UN SDGs), there appears to be limited awareness of how nanomaterials environmental health and safety (nano EHS) data can drive progress towards many of the SDGs. The goal of the NanoCommons research infrastructure project was to increase FAIRness and impact of nanoEHS data through development of services, including data shepherding to support researchers across the data life cycle and tools such as user-friendly nanoinformatics predictive models. We surveyed both service providers and service users on their ideas regarding how nanoEHS data might support the SDGs, and discovered a significant lack of awareness of the SDGs in general, and the potential for impact from NanoCommons tools and services. To address this gap, a workshop on the SDGs was prepared and delivered to support the NanoCommons service providers to understand the SDGs and how nanosafety data and nanoinformatics can support their achievement. Following the workshop, providers were invited to update their questionnaire responses. The results from the workshop discussions are presented, along with a summary of the 12 SDGs identified where increasingly accessible nanoEHS data will have a significant impact, and the 5 that are indirectly benefited along with some recommendations for EU-funded projects on how they can maximise and monitor their contributions to the SDGs

    XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services

    Get PDF
    Background: Life sciences make heavily use of the web for both data provision and analysis. However, the increasing amount of available data and the diversity of analysis tools call for machine accessible interfaces in order to be effective. HTTP-based Web service technologies, like the Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) services, are today the most common technologies for this in bioinformatics. However, these methods have severe drawbacks, including lack of discoverability, and the inability for services to send status notifications. Several complementary workarounds have been proposed, but the results are ad-hoc solutions of varying quality that can be difficult to use. Results: We present a novel approach based on the open standard Extensible Messaging and Presence Protocol (XMPP), consisting of an extension (IO Data) to comprise discovery, asynchronous invocation, and definition of data types in the service. That XMPP cloud services are capable of asynchronous communication implies that clients do not have to poll repetitively for status, but the service sends the results back to the client upon completion. Implementations for Bioclipse and Taverna are presented, as are various XMPP cloud services in bio- and cheminformatics. Conclusion: XMPP with its extensions is a powerful protocol for cloud services that demonstrate several advantages over traditional HTTP-based Web services: 1) services are discoverable without the need of an external registry, 2) asynchronous invocation eliminates the need for ad-hoc solutions like polling, and 3) input and output types defined in the service allows for generation of clients on the fly without the need of an external semantics description. The many advantages over existing technologies make XMPP a highly interesting candidate for next generation online services in bioinformatics

    The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web

    Get PDF
    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA)
    corecore