4,696 research outputs found

    Comparison of two methods for describing the strain profiles in quantum dots

    Full text link
    The electronic structure of interfaces between lattice-mismatched semiconductor is sensitive to the strain. We compare two approaches for calculating such inhomogeneous strain -- continuum elasticity (CE, treated as a finite difference problem) and atomistic elasticity (AE). While for small strain the two methods must agree, for the large strains that exist between lattice-mismatched III-V semiconductors (e.g. 7% for InAs/GaAs outside the linearity regime of CE) there are discrepancies. We compare the strain profile obtained by both approaches (including the approximation of the correct C_2 symmetry by the C_4 symmetry in the CE method), when applied to C_2-symmetric InAs pyramidal dots capped by GaAs.Comment: To appear in J. Appl. Physic

    Decision region approximation by polynomials or neural networks

    No full text
    We give degree of approximation results for decision regions which are defined by polynomial and neural network parametrizations. The volume of the misclassified region is used to measure the approximation error, and results for the degree of L1 approximation of functions are used. For polynomial parametrizations, we show that the degree of approximation is at least 1, whereas for neural network parametrizations we prove the slightly weaker result that the degree of approximation is at least r, where r can be any number in the open interval (0, 1)

    Coulomb Distortion Effects for (e,e'p) Reactions at High Electron Energy

    Get PDF
    We report a significant improvement of an approximate method of including electron Coulomb distortion in electron induced reactions at momentum transfers greater than the inverse of the size of the target nucleus. In particular, we have found a new parametrization for the elastic electron scattering phase shifts that works well at all electron energies greater than 300 MeVMeV. As an illustration, we apply the improved approximation to the (e,ep)(e,e'p) reaction from medium and heavy nuclei. We use a relativistic ``single particle'' model for (e,ep)(e,e'p) as as applied to 208Pb(e,ep)^{208}Pb(e,e'p) and to recently measured data at CEBAF on 16O(e,ep)^{16}O(e,e'p) to investigate Coulomb distortion effects while examining the physics of the reaction.Comment: 14 pages, 3 figures, PRC submitte

    MEPicides: Potent antimalarial prodrugs targeting isoprenoid biosynthesis

    Get PDF
    AbstractThe emergence of Plasmodium falciparum resistant to frontline therapeutics has prompted efforts to identify and validate agents with novel mechanisms of action. MEPicides represent a new class of antimalarials that inhibit enzymes of the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, including the clinically validated target, deoxyxylulose phosphate reductoisomerase (Dxr). Here we describe RCB-185, a lipophilic prodrug with nanomolar activity against asexual parasites. Growth of P. falciparum treated with RCB-185 was rescued by isoprenoid precursor supplementation, and treatment substantially reduced metabolite levels downstream of the Dxr enzyme. In addition, parasites that produced higher levels of the Dxr substrate were resistant to RCB-185. Notably, environmental isolates resistant to current therapies remained sensitive to RCB-185, the compound effectively treated sexually-committed parasites, and was both safe and efficacious in malaria-infected mice. Collectively, our data demonstrate that RCB-185 potently and selectively inhibits Dxr in P. falciparum, and represents a promising lead compound for further drug development.</jats:p

    A High-Throughput Screen Targeting Malaria Transmission Stages Opens New Avenues for Drug Development

    Get PDF
    A major goal of the worldwide malaria eradication program is the reduction and eventual elimination of malaria transmission. All currently available antimalarial compounds were discovered on the basis of their activity against the asexually reproducing red blood cell stages of the parasite, which are responsible for the morbidity and mortality of human malaria. Resistance against these compounds is widespread, and there is an urgent need for novel approaches to reduce the emergence of resistance to new antimalarials as they are introduced. We have established and validated the first high-throughput assay targeting the red blood cell parasite stage required for transmission, the sexually reproducing gametocyte. This assay will permit identification of compounds specifically targeting the transmission stages in addition to the asexual stage parasites. Such stage-specific compounds may be used in a combination therapy, reducing the emergence of resistance by blocking transmission of resistant parasites that may be selected in a patient

    Coulomb Charging Effects in an Open Quantum Dot

    Full text link
    Low-temperature transport properties of a lateral quantum dot formed by overlaying finger gates in a clean one-dimensional channel are investigated. Continuous and periodic oscillations superimposed upon ballistic conductance steps are observed, when the conductance G of the dot changes within a wide range 0<G<6e^2/h. Calculations of the electrostatics confirm that the measured periodic conductance oscillations correspond to successive change of the total charge of the dot by ee. By modelling the transport it is shown that the progression of the Coulomb oscillations into the region G>2e^2/h may be due to suppression of inter-1D-subband scattering. Fully transmitted subbands contribute to coherent background of conductance, while sequential tunneling via weakly transmitted subbands leads to Coulomb charging of the dot.Comment: 12 pages, RevTeX, 15 eps figures included, submitted to Phys. Rev.

    Experimental Evidence for Coulomb Charging Effects in an Open Quantum Dot at Zero Magnetic Field

    Full text link
    We have measured the low-temperature transport properties of an open quantum dot formed in a clean one-dimensional channel. For the first time, at zero magnetic field, continuous and periodic oscillations superimposed upon ballistic conductance steps are observed when the conductance through the dot GG exceeds 2e2/h2e^2/h. We ascribe the observed conductance oscillations to evidence for Coulomb charging effects in an open dot. This is supported by the evolution of the oscillating features for G>2e2/hG>2e^2/h as a function of both temperature and barrier transparency. Our results strongly suggest that at zero magnetic field, current theoretical and experimental understanding of Coulomb charging effects overlooks charging in the presence of fully transmitted 1D channels.Comment: To appear in Phys. Rev. Lett. 81 (Oct 19 issue

    Sortase-mediated labelling of lipid nanodiscs for cellular tracing

    Get PDF
    Lipid nanodiscs have broad applications in membrane protein assays, biotechnology and materials science. Chemical modification of the nanodiscs to expand their functional attributes is generally desirable for all of these uses. We present a method for site-selective labelling of the N-terminus of the nanodisc’s membrane scaffold protein (MSP) using the Sortase A protein. Labelling of the MSP was achieved when assembled within the lipid nanodisc architecture, demonstrating that this method can be used as a retrofit approach to modification of preformed nanodiscs before or during application. We label the MSP with a fluorescent fluorescein moiety and use them to image nanodisc uptake into HeLa cells. The Sortase A labelling method could be employed as a general approach to labelling nanodiscs with application-specific functionalities

    Extended H? emission line sources from UWISH2

    Get PDF
    We present the extended source catalogue for the UKIRT Wide Field Infrared Survey for H2 (UWISH2). The survey is unbiased along the inner Galactic Plane from l ? 357° to l ? 65° and |b| ? 1.5° and covers 209 deg2. A further 42.0 and 35.5 deg2 of high dust column density regions have been targeted in Cygnus and Auriga. We have identified 33 200 individual extended H2 features. They have been classified to be associated with about 700 groups of jets and outflows, 284 individual (candidate) planetary nebulae, 30 supernova remnants and about 1300 photodissociation regions. We find a clear decline of star formation activity (traced by H2 emission from jets and photodissociation regions) with increasing distance from the Galactic Centre. About 60 per cent of the detected candidate planetary nebulae have no known counterpart and 25 per cent of all supernova remnants have detectable H2 emission associated with them

    Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots

    Full text link
    We adopt an atomistic pseudopotential description of the electronic structure of self-assembled, lens shaped InAs quantum dots within the ``linear combination of bulk bands'' method. We present a detailed comparison with experiment, including quantites such as the single particle electron and hole energy level spacings, the excitonic band gap, the electron-electron, hole-hole and electron hole Coulomb energies and the optical polarization anisotropy. We find a generally good agreement, which is improved even further for a dot composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review
    corecore