13,834 research outputs found

    Diffusion Approximations for Demographic Inference: DaDi

    Get PDF
    Models of demographic history (population sizes, migration rates, and divergence times) inferred from genetic data complement archeology and serve as null models in genome scans for selection. Most current inference methods are computationally limited to considering simple models or non-recombining data. We introduce a method based on a diffusion approximation to the joint frequency spectrum of genetic variation between populations. Our implementation, DaDi, can model up to three interacting populations and scales well to genome-wide data. We have applied DaDi to human data from Africa, Europe, and East Asia, building the most complex statistically well-characterized model of human migration out of Africa to date

    Development of a Consensus Statement for the Definition, Diagnosis, and Treatment of Acute Exacerbations of Idiopathic Pulmonary Fibrosis Using the Delphi Technique.

    Get PDF
    © 2015, The Author(s).Introduction: There is a lack of agreed and established guidelines for the treatment of acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF). This reflects, in part, the limited evidence-base underpinning the management of AE-IPF. In the absence of high-quality evidence, the aim of this research was to develop a clinician-led consensus statement for the definition, diagnosis and treatment of AE-IPF. Methods: A literature review was conducted to obtain published material on the definition and treatment of AE-IPF. The results of this review were circulated to an online panel of clinicians for review. Statements were then shared with ten expert respiratory clinicians who regularly treat patients with IPF. A Delphi technique was then used to develop a consensus statement for the definition, diagnosis and treatment of AE-IPF. During the first round of review, clinicians rated the clarity of each statement, the extent to which the statement should be included and provided comments. In two subsequent rounds of review, clinicians were provided with the group median inclusion rating for each statement, and any revised wording of statements to aid clarity. Clinicians were asked to repeat the clarity and inclusion ratings for the revised statements. Results: The literature review, online panel discussion, and face-to-face meeting generated 65 statements covering the definition, diagnosis, and management of AE-IPF. Following three rounds of blind review, 90% of clinicians agreed 39 final statements. These final statements included a definition of AE-IPF, approach to diagnosis, and treatment options, specifically: supportive measures, use of anti-microbials, immunosuppressants, anti-coagulants, anti-fibrotic therapy, escalation, transplant management, and long-term management including discharge planning. Conclusion: This clinician-led consensus statement establishes the ‘best practice’ for the management and treatment of AE-IPF based on current knowledge, evidence, and available treatments. Funding: Boehringer Ingelheim Ltd., Bracknell, West Berkshire, UK

    Anomalous Radio-Wave Scattering from Interstellar Plasma Structures

    Full text link
    This paper considers scattering screens that have arbitrary spatial variations of scattering strength transverse to the line of sight, including screens that are spatially well confined, such as disks and filaments. We calculate the scattered image of a point source and the observed pulse shape of a scattered impulse. The consequences of screen confinement include: (1) Source image shapes that are determined by the physical extent of the screen rather than by the shapes of much-smaller diffracting microirregularities. These include image elongations and orientations that are frequency dependent. (2) Variation with frequency of angular broadening that is much weaker than the trademark \nu^{-2} scaling law (for a cold, unmagnetized plasma), including frequency-independent cases; and (3) Similar departure of the pulse broadening time from the usually expected \nu^{-4} scaling law. We briefly discuss applications that include scattering of pulses from the Crab pulsar by filaments in the Crab Nebula; image asymmetries from Galactic scattering of the sources Cyg X-3, Sgr A*, and NGC 6334B; and scattering of background active galactic nuclei by intervening galaxies. We also address the consequences for inferences about the shape of the wavenumber spectrum of electron density irregularities, which depend on scaling laws for the image size and the pulse broadening. Future low-frequency (< 100 MHz) array observations will also be strongly affected by the Galactic structure of scattering material. Our formalism is derived in the context of radio scattering by plasma density fluctuations. It is also applicable to optical, UV and X-ray scattering by grains in the interstellar medium.Comment: 21 pages, LaTeX2e with AASTeX-4.0, 6 PostScript figures, accepted by ApJ, revised version has minor changes to respond to referee comments and suggestion

    Development of a cometosheath at comet 67P/Churuyumov-Gerasimenko: A case study comparison of Rosetta observations

    Get PDF
    Context: The ionosphere of a comet is known to deflect the solar wind through mass loading, but the interaction is dependent on cometary activity. We investigate the details of this process at comet 67P using the Rosetta Ion Composition Analyzer. Aims: This study aims to compare the interaction of the solar wind and cometary ions during two different time periods in the Rosetta mission. Methods: We compared both the integrated ion moments (density, velocity, and momentum flux) and the velocity distribution functions for two days, four months apart. The velocity distribution functions were projected into a coordinate system dependent on the magnetic field direction and averaged over three hours. Results: The first case shows highly scattered H+ in both ion moments and velocity distribution function. The He2+ ions are somewhat scattered, but less so, and appear more like those of H2O+ pickup ions. The second case shows characteristic evidence of mass-loading, where the solar wind species are deflected, but the velocity distribution function is not significantly changed. Conclusions: The distributions of H+ in the first case, when compared to He2+ and H2O+ pickup ions, are indicative of a narrow cometosheath on the scale of the H+ gyroradius. Thus, He2+ and H2O+, with larger gyroradii, are largely able to pass through this cometosheath. An examination of the momentum flux tensor suggests that all species in the first case have a significant non-gyrotropic momentum flux component that is higher than that of the second mass-loaded case. Mass loading is not a sufficient explanation for the distribution functions and momentum flux tensor in the first case, and so we assume this is evidence of bow shock formation.Comment: 14 pages, 9 figures, 3 tables, 2 video

    Roughness-induced critical phenomena in a turbulent flow

    Full text link
    I present empirical evidence that turbulent flows are closely analogous to critical phenomena, from a reanalysis of friction factor measurements in rough pipes. The data collapse found here corresponds to Widom scaling near critical points, and implies that a full understanding of turbulence requires explicit accounting for boundary roughness

    An Alternative Interpretation of Recent ARPES Measurements on TiSe2

    Full text link
    Recently there has been a renewed interest in the charge density wave transition of TiSe2, fuelled by the possibility that this transition may be driven by the formation of an excitonic insulator or even an excitonic condensate. We show here that the recent ARPES measurements on TiSe2 can also be interpreted in terms of an alternative scenario, in which the transition is due to a combination of Jahn-Teller effects and exciton formation. The hybrid exciton-phonons which cause the CDW formation interpolate between a purely structural and a purely electronic type of transition. Above the transition temperature, the electron-phonon coupling becomes ineffective but a finite mean-field density of excitons remains and gives rise to the observed diffuse ARPES signals.Comment: 4 pages, 2 figure

    Variational quantum Monte Carlo calculations for solid surfaces

    Full text link
    Quantum Monte Carlo methods have proven to predict atomic and bulk properties of light and non-light elements with high accuracy. Here we report on the first variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking the boundary condition for the simulation from a finite layer geometry, the Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved form and evaluated with a two-dimensional Ewald summation technique. The exact cancellation of all Jellium contributions to the Hamiltonian is ensured. The many-body trial wave function consists of a Slater determinant with parameterized localized orbitals and a Jastrow factor with a common two-body term plus a new confinement term representing further variational freedom to take into account the existence of the surface. We present results for the ideal (110) surface of Galliumarsenide for different system sizes. With the optimized trial wave function, we determine some properties related to a solid surface to illustrate that VMC techniques provide standard results under full inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style, submitted to Phys. Rev.
    • …
    corecore