27,211 research outputs found
Attitude-referenced radiometer study. Part 2: Primary calibration system
A primary calibration system, PCS, for infrared radiometers has been developed, built, and tested. The system allows radiometers to be calibrated with less than 1 percent error for use in earth coverage horizon measurements, earth resources surveys, and synoptic meteorological measurement. The final design, fabrication and test of the PCS are reported. A detailed description of the PCS construction is presented, along with the results of a complete series of functional tests. Test to verify the source thermal characteristics, collimator reflectance, and output beam characteristics are described and their results presented
Cryogenic adhesives and sealants: Abstracted publications
Abstracts of primary documents containing original experimental data on the properties of adhesives and sealants at cryogenic temperatures are presented. The most important references mentioned in each document are cited. In addition, a brief annotation is given for documents considered secondary in nature, such as republications or variations of original reports, progress reports leading to final reports included as primary documents, and experimental data on adhesive properties at temperatures between about 130 K and room temperature
Pressure-dependent 13C chemical shifts in proteins: Origins and applications
Pressure-dependent (13)C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH(3), CH(2) and CH carbon shifts change on average by +0.23, -0.09 and -0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the gamma-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual (13)C alpha shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas (13)C beta shifts retain significant dependence on local compression, making them less useful as structural restraints
Anomalous enhancement of a penguin hadronic matrix element in B->K eta'
We estimate the density matrix element for the pi^0, eta and eta' production
from the vacuum in the large-N_c limit. As a consequence, we find that the QCD
axial anomaly leads to highly non-trivial corrections to the usual flavour
SU(3) relations between B^0-> K^0 pi^0, B^0-> K^0 eta and B^0-> K^0 eta' decay
amplitudes. These corrections may explain why the B-> K eta' branching ratio is
about six times larger than the B-> K pi one.Comment: 5 pages, 1 figur
Interface design in the process industries
Every operator runs his plant in accord with his own mental model of the process. In this sense, one characteristic of an ideal man-machine interface is that it be in harmony with that model. With this theme in mind, the paper first reviews the functions of the process operator and compares them with human operators involved in control situations previously studied outside the industrial environment (pilots, air traffic controllers, helmsmen, etc.). A brief history of the operator interface in the process industry and the traditional methodology employed in its design is then presented. Finally, a much more fundamental approach utilizing a model definition of the human operator's behavior is presented
The flight robotics laboratory
The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described
Linear MHD Wave Propagation in Time-Dependent Flux Tube: III. Leaky Waves in Zero-Beta Plasma
In this article, we evaluate the time-dependent wave properties and the damping rate of propagating fast magneto-hydrodynamic (MHD) waves when energy leakage into a magnetised atmosphere is considered. By considering a cold plasma, initial investigations into the evolution of MHD wave damping through this energy leakage will take place. The time-dependent governing equations have been derived previously in Williamson and Erdélyi (2014a, Solar Phys.289, 899 – 909) and are now solved when the assumption of evanescent wave propagation in the outside of the waveguide is relaxed. The dispersion relation for leaky waves applicable to a straight magnetic field is determined in both an arbitrary tube and a thin-tube approximation. By analytically solving the dispersion relation in the thin-tube approximation, the explicit expressions for the temporal evolution of the dynamic frequency and wavenumber are determined. The damping rate is, then, obtained from the dispersion relation and is shown to decrease as the density ratio increases. By comparing the decrease in damping rate to the increase in damping for a stationary system, as shown, we aim to point out that energy leakage may not be as efficient a damping mechanism as previously thought
Systematic challenges for future gravitational wave measurements of precessing binary black holes
The properties of precessing, coalescing binary black holes are presently
inferred through comparison with two approximate models of compact binary
coalescence. In this work we show these two models often disagree substantially
when binaries have modestly large spins () and modest mass ratios
(). We demonstrate these disagreements using standard figures of
merit and the parameters inferred for recent detections of binary black holes.
By comparing to numerical relativity, we confirm these disagreements reflect
systematic errors. We provide concrete examples to demonstrate that these
systematic errors can significantly impact inferences about astrophysically
significant binary parameters. For the immediate future, parameter inference
for binary black holes should be performed with multiple models (including
numerical relativity), and carefully validated by performing inference under
controlled circumstances with similar synthetic events.Comment: 12 pages, 9 figure
- …