51 research outputs found

    Metabolic Impact of Adult-Onset, Isolated, Growth Hormone Deficiency (AOiGHD) Due to Destruction of Pituitary Somatotropes

    Get PDF
    Growth hormone (GH) inhibits fat accumulation and promotes protein accretion, therefore the fall in GH observed with weight gain and normal aging may contribute to metabolic dysfunction. To directly test this hypothesis a novel mouse model of adult onset-isolated GH deficiency (AOiGHD) was generated by cross breeding rat GH promoter-driven Cre recombinase mice (Cre) with inducible diphtheria toxin receptor mice (iDTR) and treating adult Cre+/−,iDTR+/− offspring with DT to selectively destroy the somatotrope population of the anterior pituitary gland, leading to a reduction in circulating GH and IGF-I levels. DT-treated Cre−/−,iDTR+/− mice were used as GH-intact controls. AOiGHD improved whole body insulin sensitivity in both low-fat and high-fat fed mice. Consistent with improved insulin sensitivity, indirect calorimetry revealed AOiGHD mice preferentially utilized carbohydrates for energy metabolism, as compared to GH-intact controls. In high-fat, but not low-fat fed AOiGHD mice, fat mass increased, hepatic lipids decreased and glucose clearance and insulin output were impaired. These results suggest the age-related decline in GH helps to preserve systemic insulin sensitivity, and in the context of moderate caloric intake, prevents the deterioration in metabolic function. However, in the context of excess caloric intake, low GH leads to impaired insulin output, and thereby could contribute to the development of diabetes

    NPY Neuron-Specific Y2 Receptors Regulate Adipose Tissue and Trabecular Bone but Not Cortical Bone Homeostasis in Mice

    Get PDF
    BACKGROUND: Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE: Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone

    Influence of phosphate concentration on amine, amide, and hydroxyl CEST contrast

    No full text
    PurposeTo evaluate the influence of phosphate on amine, amide, and hydroxyl CEST contrast using Bloch-McConnell simulations applied to physical phantom data.MethodsPhantom solutions of 4 representative metabolites with exchangeable protons-glycine (α-amine protons), Cr (η-amine protons), egg white protein (amide protons), and glucose (hydroxyl protons)-were prepared at different pH levels (5.6 to 8.9) and phosphate concentrations (5 to 80 mM). CEST images of the phantom were collected with CEST-EPI sequence at 3 tesla. The CEST data were then fitted to full Bloch-McConnell equation simulations to estimate the exchange rate constants. With the fitted parameters, simulations were performed to evaluate the intracellular and extracellular contributions of CEST signals in normal brain tissue and brain tumors, as well as in dynamic glucose-enhanced experiments.ResultsThe exchange rates of α-amine and hydroxyl protons were found to be highly dependent on both pH and phosphate concentrations, whereas the exchange rates of η-amine and amide protons were pH-dependent, albeit not catalyzed by phosphate. With phosphate being predominantly intracellular, CEST contrast of α-amine exhibited a higher sensitivity to changes in the extracellular microenvironment. Simulations of dynamic glucose-enhanced signals demonstrated that the contrast between normal and tumor tissue was mostly due to the extracellular CEST effect.ConclusionThe proton exchange rates in some metabolites can be greatly catalyzed by the presence of phosphate at physiological concentrations, which substantially alters the CEST contrast. Catalytic agents should be considered as confounding factors in future CEST-MRI research. This new dimension may also benefit the development of novel phosphate-sensitive imaging methods
    corecore