176,090 research outputs found
Who You Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs
We briefly review the formulation of effective field theories (EFTs) in
time-dependent situations, with particular attention paid to their domain of
validity. Our main interest is the extent to which solutions of the EFT capture
the dynamics of the full theory. For a simple model we show by explicit
calculation that the low-energy action obtained from a sensible UV completion
need not take the restrictive form required to obtain only second-order field
equations, and we clarify why runaway solutions are nevertheless typically not
a problem for the EFT. Although our results will not be surprising to many, to
our knowledge they are only mentioned tangentially in the EFT literature, which
(with a few exceptions) largely addresses time-independent situations.Comment: 12 page
Radar studies of bird migration
Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented
Bird Migration Through A Mountain Pass Studied With High Resolution Radar, Ceilometers, And Census
Autumnal migration was studied with high-resolution radar, ceilometer, and daily census in the area of Franconia Notch, a major pass in the northern Appalachian Mountains. Under synoptic conditions favorable for migration, broadfront movements of migrants toward the south passed over the mountains, often above a temperature inversion. Birds at lower elevations appeared to be influenced by local topography. Birds moving southwest were concentrated along the face of the mountain range. Birds appeared to deviate their flights to follow local topography through the pass. Specific migratory behavior was not associated with species or species groups. Under synoptic conditions unfavorable for southward migration, multimodal movements probably associated with local flights were as dense as the southward migrations described above. Avian migrants reacting to local terrain may result in concentrations of migrants over ridge summits or other topographic features
The influence of vegetation structure and composition on invasibility by Pinus radiata in the Blue Mountains, NSW
The exotic tree species Pinus radiata D. Don (in the family Pinaceae) has successfully spread from commercial plantations into adjacent vegetation in southeastern Australia. Identifying factors facilitating spread will aid the control of current invasions and the prediction of future invasion events. The structure and composition of vegetation can have an important role in determining community resilience to invasion. Two dry eucalypt sclerophyll woodlands in the Blue Mountains west of Sydney known to be invaded by Pinus radiata were surveyed to investigate the influence of eucalypt presence, species diversity, species composition and vegetation cover on the extent and density of invasion. Relationships between community characteristics and the level of pine invasion were weak and variable. Pines were found growing in plots with 0–70% understorey cover and 5–90% ground cover, and in areas of both high and low eucalypt diversity and presence, illustrating the high invasion potential of Pinus radiata
Snake States in Graphene p-n Junctions
We investigate transport in locally-gated graphene devices, where carriers
are injected and collected along, rather than across, the gate edge. Tuning
densities into the p-n regime significantly reduces resistance along the p-n
interface, while resistance across the interface increases. This provides an
experimental signature of snake states, which zig-zag along the p-n interface
and remain stable as applied perpendicular magnetic field approaches zero.
Snake states appear as a peak in transverse resistance measured along the p-n
interface. The generic role of snake states disordered graphene is also
discussed.Comment: supplemental material available at
http://marcuslab.harvard.edu/papers/Williams_SnakesSupp.pd
EFT for Vortices with Dilaton-dependent Localized Flux
We study how codimension-two objects like vortices back-react gravitationally
with their environment in theories (such as 4D or higher-dimensional
supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system.
We do so both in the full theory, for which the vortex is an explicit classical
`fat brane' solution, and in the effective theory of `point branes' appropriate
when the vortices are much smaller than the scales of interest for their
back-reaction (such as the transverse Kaluza-Klein scale). We extend the
standard Nambu-Goto description to include the physics of flux-localization
wherein the ambient flux of the external Maxwell field becomes partially
localized to the vortex, generalizing the results of a companion paper to
include dilaton-dependence for the tension and localized flux. In the effective
theory, such flux-localization is described by the next-to-leading effective
interaction, and the boundary conditions to which it gives rise are known to
play an important role in how (and whether) the vortex causes supersymmetry to
break in the bulk. We track how both tension and localized flux determine the
curvature of the space-filling dimensions. Our calculations provide the tools
required for computing how scale-breaking vortex interactions can stabilize the
extra-dimensional size by lifting the dilaton's flat direction. For small
vortices we derive a simple relation between the near-vortex boundary
conditions of bulk fields as a function of the tension and localized flux in
the vortex action that provides the most efficient means for calculating how
physical vortices mutually interact without requiring a complete construction
of their internal structure. In passing we show why a common procedure for
doing so using a -function can lead to incorrect results. Our
procedures generalize straightforwardly to general co-dimension objects.Comment: 45 pages + appendix, 6 figure
Vortex Fluctuations in the Critical Casimir Effect of Superfluid and Superconducting Films
Vortex-loop renormalization techniques are used to calculate the magnitude of
the critical Casimir forces in superfluid films. The force is found to become
appreciable when size of the thermal vortex loops is comparable to the film
thickness, and the results for T < Tc are found to match very well with
perturbative renormalization theories that have only been carried out for T >
Tc. When applied to a high-Tc superconducting film connected to a bulk sample,
the Casimir force causes a voltage difference to appear between the film and
bulk, and estimates show that this may be readily measurable.Comment: 4 pages, 5 figures, Revtex 4, typo correctio
The Gravity of Dark Vortices: Effective Field Theory for Branes and Strings Carrying Localized Flux
A Nielsen-Olesen vortex usually sits in an environment that expels the flux
that is confined to the vortex, so flux is not present both inside and outside.
We construct vortices for which this is not true, where the flux carried by the
vortex also permeates the `bulk' far from the vortex. The idea is to mix the
vortex's internal gauge flux with an external flux using off-diagonal kinetic
mixing. Such `dark' vortices could play a phenomenological role in models with
both cosmic strings and a dark gauge sector. When coupled to gravity they also
provide explicit ultra-violet completions for codimension-two brane-localized
flux, which arises in extra-dimensional models when the same flux that
stabilizes extra-dimensional size is also localized on space-filling branes
situated around the extra dimensions. We derive simple formulae for observables
such as defect angle, tension, localized flux and on-vortex curvature when
coupled to gravity, and show how all of these are insensitive to much of the
microscopic details of the solutions, and are instead largely dictated by
low-energy quantities. We derive the required effective description in terms of
a world-sheet brane action, and derive the matching conditions for its
couplings. We consider the case where the dimensions transverse to the bulk
compactify, and determine how the on- and off-vortex curvatures and other bulk
features depend on the vortex properties. We find that the brane-localized flux
does not gravitate, but just renormalizes the tension in a magnetic-field
independent way. The existence of an explicit UV completion puts the effective
description of these models on a more precise footing, verifying that
brane-localized flux can be consistent with sensible UV physics and resolving
some apparent paradoxes that can arise with a naive (but commonly used)
delta-function treatment of the brane's localization within the bulk.Comment: 36 pages + appendices, 7 figure
- …
