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Abstract: We briefly review the formulation of effective field theories (EFTs) in time-

dependent situations, with particular attention paid to their domain of validity. Our main

interest is the extent to which solutions of the EFT capture the dynamics of the full theory.

For a simple model we show by explicit calculation that the low-energy action obtained from

a sensible UV completion need not take the restrictive form required to obtain only second-

order field equations, and we clarify why runaway solutions are nevertheless typically not a

problem for the EFT. Although our results will not be surprising to many, to our knowledge

they are only mentioned tangentially in the EFT literature, which (with a few exceptions)

largely addresses time-independent situations.
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1 Introduction

Effective Field Theories (EFTs) are standard tools for describing situations where two

very different energy scales arise, E � M , and their effectiveness is based on exploiting

the simplicity that follows from expanding in powers of E/M as early in a calculation

as possible [1–9]. In particular the effective (Wilson) lagrangian density is constructed

exclusively from low-energy fields, but is designed to capture the virtual effects of high-

energy states (with energy M) on the evolution of lower-energy states (with energy E)

order-by-order in powers of E/M .

Implicit in this treatment is the assumption that once the high-energy modes are

excluded from all initial conditions they never reappear again in final states, a property

that is normally ensured by conservation of energy provided the initial energy is too small

to allow transitions to the high-energy sector.1 For most applications this all works because

one is interested only in small fluctuations about the system’s ground state, which is time-

independent with only low-energy modes significantly disturbed from their vacuum.

Yet systems with different energy scales need not be prepared arbitrarily close to their

vacuum, even if the energies involved are low. And more complicated states can be (and

often are) time-dependent. Practical examples where this can be true include applications

to cosmology or, more generally, to the response to time-dependent applied fields. How do

EFTs work in such a time-dependent situation?

1Of course, EFTs can also apply to situations where high-energy states are initially present — such as

for nucleons in the low-energy EFT for pions — so long as they are stable (or approximately so) and so

cannot catastrophically release their high energy to the lower-energy particles.
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In this note we examine some aspects of this question, partly motivated by several re-

cent approaches to cosmological problems. In particular we track two conceptually different

(but related) issues:

• One issue works within the space of low-energy fluctuations around the vacuum and

asks about how time-dependent configurations evolve within this space. In particular

one asks whether solving the field equations within the relevant low-energy EFT ac-

curately identifies the time-dependent backgrounds that would be obtained by solving

the field equations of the full UV-completion.

• The second issue focusses on a specific time-dependent configuration identified in

this way, and asks how to set up the EFT describing fluctuations about this time-

dependent background (and for its domain of validity). Part of this question asks

how to use conservation of energy to exclude high-energy states (as in the usual

EFT development) given that fluctuations about a time-dependent background do

not have a conserved energy.

In this paper our focus is mainly on the first of these, but we argue that both issues hinge

crucially on the adiabatic approximation.

For the first issue itemized above we review, in section 2.1, the standard argument

that shows why the solutions to the EFT’s equations of motion also solve the equations

of motion for the full theory. Naively, this conclusion seems to lead to a problem: since

EFTs generically involve interactions containing higher time derivatives, their equations

of motion generically include the runaway solutions to which higher-derivative equations

usually lead. How can this be true if the underlying UV completion is itself stable?

This apparent conundrum sometimes leads to the proposal that not all higher-

derivative interactions actually arise in an EFT that is obtained from a stable UV comple-

tion. This proposal would be informative if true: EFTs arising from sensible underlying

theories would then be subject to additional conditions beyond the usual ones of locality,

cluster decomposition and so on.2 In particular their higher-derivative interactions should

come organized into the specific combinations that only generate second-derivative field

equations, such as the Lovelock [12] or Horndeski [13] invariants for gravity and scalar-

tensor gravity, respectively. This would be a very powerful conclusion, all the more so

given that these actions (and others like them [14–17]) contain many phenomenologically

interesting cosmological models [18–21].

2Such a condition is similar in spirit to the conditions of refs. [10, 11] that aim to distinguish when an

EFT lies within the ‘landscape’ of vacua of the UV theory, as opposed to the ‘swampland’ of EFTs that do

not.
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We show here that EFTs arising from stable UV completions in general need not be

subject to an independent stability condition in this way. We first do so by explicitly

computing the higher-derivative terms that arise (even at the classical level) in a simple

toy model when a heavy field is integrated out. After doing so we point out how the general

arguments of section 2.1 are less general than they appear: the equations of motion of the

EFT are only required to capture the effects of full theory order-by-order in powers of

1/M , and because the runaway solutions typically vary as eMt they do not arise within the

1/M expansion. This is why the runaway behaviour in the EFT is spurious.

Closely related to this is the observation that the EFT can only ever hope to capture the

adiabatic time-dependence of the full theory, in the sense that the low-energy approximation

requires time derivatives of any quantity, φ, must satisfy φ̇/φ�M . If this were not satisfied

then generically enough energy could be extracted to invalidate the restriction to low-energy

states. Although a time-dependence like e±Mt can arise within the UV completion, it would

not be adiabatic and so would not be expected to be captured by the low-energy EFT [22].

Although we do not pursue this in detail here, we believe it is ultimately this adia-

batic limit that also underlies the ability to set up an EFT describing fluctuations about a

specific time-dependent configurations, such as is done for the EFT of cosmological fluctua-

tions [23, 24]. Although strictly speaking the time-dependence of the background precludes

the existence of a conserved energy with which to differentiate high-energy from low, for

adiabatic time dependence a locally time-dependent energy can be defined for this purpose.

Of course because it is time-dependent, one must continuously check that the low-energy

condition, E(t) � M(t), remains true at all times to be sure that the low-energy EFT

continues to apply.

Of course none of this means there is no merit in building models from lagrangians of

the Lovelock or Horndeski class, for which higher-derivative interactions are important and

yet do not introduce higher than second-order field equations. Such models presuppose a

regime where these particular higher derivatives are not as suppressed as are generic higher-

derivative interactions. Although we do not know of examples of UV completions whose

low-energy EFTs have this property, this does not mean they cannot exist and a clean

enunciation of precisely when this is possible would be very instructive.

2 The effectiveness of the equations of motion

This section presents our main results. We start, in section 2.1, with a review of why

solutions to the EFT field equations capture the properties of solutions of the full underlying

UV completion. We then specialize, in section 2.2, to a simple toy model and explicitly

integrate out a heavy field to verify that higher-derivative interactions are obtained that
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are not in the class one would consider if one were to restrict to terms that contribute only

up to second derivatives in the field equations. In section 2.3 we close by showing why the

arguments of section 2.1 nonetheless do not require taking seriously the EFT’s nominally

runaway solutions as accurately reflecting properties of the full theory.

2.1 General arguments

To see why EFTs and UV completions agree on their solutions to the equations of motion

one must hark back to the definitions of the EFT itself.3 To this end consider a theory for

which H and L schematically denote the ‘high-energy’ and ‘low-energy’ degrees of freedom,

for which we wish to integrate out H to obtain the EFT for L.

1PI generating functionals

A good starting point is the path-integral expression for the generator of 1PI (1-particle

irreducible) correlations,4 Γ(h, `), for the full theory,

exp
{
iΓ1PI[h, `]

}
=

∫
DH DL exp

{
iS[h+H, `+ L] + i

∫
d4x

(
JH + jL

)}
, (2.1)

where the ‘currents’ J = J(h, `) and j = j(h, `) are implicitly defined by

δΓ1PI

δh
+ J =

δΓ1PI

δ`
+ j = 0 . (2.2)

Although such an implicit definition at first sight might not seem very useful, it has a

very simple graphical interpretation: evaluation of the currents at this point cancels the

contribution of all 1-particle reducible graphs to Γ1PI.

In these expressions the currents J and j (or h and `) are dummy arguments that are

meant to be differentiated to obtain correlation functions, with J = j = 0 chosen once this

differentiation is done. In particular, the field expectations, 〈H〉 and 〈L〉, for the low-energy

state in which the system is prepared are given by h and ` evaluated at J = j = 0. But

this, together with eq. (2.2), shows that this means that these configurations are obtained

by extremizing Γ1PI: (
δΓ1PI

δh

)
h=〈H〉, `=〈L〉

=

(
δΓ1PI

δ`

)
h=〈H〉, `=〈L〉

= 0 , (2.3)

and this is one of the reasons why Γ1PI is of interest.

When evaluated within a semiclassical approximation we also have

Γ1PI[h, `] = S[h, `] + Σ1−loop[h, `] + · · · , (2.4)

3We follow here the review [6].
4A connected graph is 1-particle reducible if it can be broken into two disconnected graphs by breaking

only a single internal line.
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so Γ1PI agrees with the classical action in the classical approximation, while hc = 〈H〉 and

`c = 〈L〉 reduce to classical field configurations, that satisfy (δS/δh)hc,`c = (δS/δ`)hc,`c = 0.

Low-energy approximation

If only low-energy observables are of interest we can set J = 0 and track only j (or

equivalently, `). In this case it is useful to define low-energy Wilson action (or EFT) by

exp
{
iSEFT[L]

}
=

∫
DH exp {iS[H,L]} , (2.5)

since this is the only part of the integral that depends on H. With this definition the J = 0

result is given by

exp
{
iΓ1LPI[`]

}
=

∫
DL exp

{
iSEFT[`+ L] + i

∫
d4x jL

}
, (2.6)

where Γ1LPI denotes the generator of 1LPI (1-light-particle irreducible) correlations. A

connected graph is 1LPI if it can be broken into two disconnected graphs by breaking only

one internal L line, and it differs from a 1PI graph because it can include graphs that break

into two when a single H line is cut. Γ1LPI is only 1LPI (and not 1PI) because only j is

evaluated at j = −δΓ1LPI/δ` to cancel the reducible graphs. J can no longer similarly be

used because it has been set to zero.

For later purposes what is important is that eq. (2.2) shows that Γ1LPI[`] is related to

Γ1PI[h, `] by

Γ1LPI[`] = Γ1PI[hc(`), `] , where

(
δΓ1PI

δh

)
h=hc(`)

= 0 . (2.7)

On the other hand, the light-field expectation, 〈L〉 = `c, satisfies(
δΓ1LPI

δ`

)
`c

= 0 , (2.8)

which in view of eq. (2.7) and the choice made for h = hc(`), also shows that `c is also a

stationary point of Γ1PI.

Now comes the main point. The above properties show that any configuration, `c,

obtained by extremizing Γ1LPI always also extremizes Γ1PI, simply because Γ1LPI itself is

obtained from Γ1PI simply by evaluating at the extremal configuration, h = hc(`), that

satisfies (δΓ1PI/δh)h=hc = 0. In particular, once restricted to the classical approximation

— as is of interest in many practical applications, such as to cosmology — the above

properties show that the low-energy EFT has an action, SEFT[`], that is obtained from the

action, S[h, `], of the full theory by

SEFT[`] = S[hc(`), `] , where

(
δS

δh

)
h=hc(`)

= 0 . (2.9)
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Consequently any solution, `c, to the field equations of the EFT,(
δSEFT

δ`

)
`=`c

= 0 , (2.10)

must also be extrema of the full action, by virtue of the choice h = hc(`). This is why

classical solutions of the effective theory are normally thought to capture the behaviour of

classical solutions of the full UV-complete theory.

2.2 An illustrative toy examples

We now apply the above reasoning to a simple example, deriving the leading contributions

to the low-energy EFT. Our goal is to show that these include higher-derivative interactions

that contribute higher derivatives to the EFT’s equations of motion.

Let’s begin with the action for a complex scalar of the form

S = −
∫

d4x
[
∂µφ

∗∂µφ+ V (φ∗φ)
]

(2.11)

with

V (φ∗φ) =
λ

2

(
φ∗φ− v2

2

)2

.

When λ � 1 the theory can be analyzed in a semiclassical expansion, with the vacuum

obtained by minimizing V at φ∗φ = 1
2 v

2. This spontaneously breaks the symmetry φ →
eiωφ, leading to a particle spectrum that involves a massive field with mass M2 = λv2

together with a massless Goldstone boson.

To exhibit these states explicitly we write

φ(x) =
v√
2

[
1 + ρ(x)

]
eiθ(x)

where ρ(x) and θ(x) are dimensionless fields. In terms of these the classical action takes

the form
S

v2
= −

∫
d4x

[
1

2
∂µρ ∂

µρ+
1

2
(1 + ρ)2∂µθ ∂

µθ + V (ρ)

]
(2.12)

where

V (ρ) =
M2

2

(
ρ2 + ρ3 +

1

4
ρ4
)
.

Varying this action gives the classical equations of motion:

�ρ− (1 + ρ)(∂θ)2 − V ′(ρ) = 0 (2.13)

∂µ

[
(1 + ρ)2∂µθ

]
= 0 , (2.14)

where (∂θ)2 := ∂µθ∂
µθ.
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In the limit where M is very large compared with the energies of interest we can

integrate out the ρ field to determine its leading-order effects on the low-energy physics

of θ-particles. We do so in position space, partly to make the point that nothing in the

reasoning depends on invariance under spatial translations, and so similar reasoning could

be used in a gravitational context [7–9]. To this end we follow the above prescription and

eliminate ρ using the solution to its equation of motion, eq. (2.13), and substitute the result

back into the action, eq. (2.12).

To obtain the solution for ρc we introduce a function G(x, x′) satisfying

(−� +M2)G(x, x′) = δ(4)(x− x′) , (2.15)

in terms of which the (recursive) solution for ρ(x) is:

ρ(x′) = −
∫

d4xG(x, x′)
{[

1 + ρ(x)
][
∂θ(x)

]2
+ V ′int

[
ρ(x)

]}
. (2.16)

where Vint := V − 1
2 M

2ρ2.

In general the solution for ρ is a nonlocal mess, but simplifies considerably in the

large-M limit. To display this simplicity we write

ρ(x) =
∞∑
n=1

rn(x)

M2n
, G(x, x′) =

∞∑
n=1

gn(x, x′)

M2n
,

and consider only the leading and next-to-leading contributions to ρ(x), up to O(1/M4).

From eq. (2.15), we identify

g1(x, x
′) = δ(4)(x− x′) , g2(x, x

′) = �δ(4)(x− x′) , (2.17)

which shows how G(x, x′) becomes local in the large-M limit.

Using these solve for r1(x) by substituting into (2.16) then gives

r1 = −(∂θ)2 . (2.18)

Interestingly, this result implies we do not require an explicit form for r2 to evaluate the

action to order O(1/M4), since using

ρ ' r1
M2

+
r2
M4

(2.19)

in eq. (2.12) gives

S

v2
' −

∫
d4x

{
1

2
(∂θ)2 +

1

2M2

[
2(∂θ)2 r1 + r21

]
+

1

2M4

[
(∂r1)

2 +
[
(∂θ)2 + r1

](
r21 + 2r2

)]}
= −

∫
d4x

{
1

2
(∂θ)2 − 1

2M2
(∂θ)4 +

1

2M4
∂µ
[
(∂θ)2

]
∂µ
[
(∂θ)2

]}
(2.20)

= −
∫
d4x

{
1

2
(∂θ)2 − 1

2M2
(∂θ)4 +

2

M4
(θµνθ

µρ) (∂ρθ ∂
νθ)

}
,

where in the last line we introduce θµν := ∂µ∂νθ.
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To see that the last term in the action, eq. (2.20), potentially introduces new (often

runaway) solutions it suffices to specialize to the case where all derivatives are in the time

direction, in which case it is proportional to L = k
2 θ̈

2θ̇2, with k = 4/M4, whose variation is

δL

k
=
[
θ̈θ̇2
]
δθ̈ +

[
θ̇θ̈2
]
δθ̇ =

[
θ̈̈ θ̇2 + 4 θ̈˙ θ̈ θ̇ + θ̈3

]
δθ , (2.21)

and the last equality performs several integrations by parts. Because this is a fourth-order

equation for θ it requires more initial data (the initial values of θ̈ and θ̈˙ ), indicating the

existence of new solutions.

2.3 Clearing the runaways

So why don’t the higher-order equations of motion arising within EFTs describe solutions

of the underlying UV-completion, particularly given the general arguments of section 2.1

that appear to indicate that they should?

The key step in the previous section was the expansion in powers of 1/M ; in particular

it is only after this expansion that the EFT is described by a local lagrangian density.

Because of this we should only trust that integrating the equations of motion of the local

EFT captures the solutions of the underlying UV-completion only order-by-order in powers

of 1/M . The problem with the ‘new’ solutions associated with the new higher-derivative

terms is that they do not arise as a series in powers of 1/M , because they are singular

perturbations of the zeroth-order differential equation.

To obtain an intuition for why this is so consider the following quadratic (but higher-

order) toy lagrangian:
L

v2
=

1

2
θ̇2 +

1

2M2
θ̈2 , (2.22)

whose variation δL = 0 gives the higher-order, but linear, equation of motion

− θ̈ +
1

M2
θ̈̈ = 0 . (2.23)

The general solution to this equation is

θ = A+Bt+ CeMt +De−Mt , (2.24)

where A, B, C and D are integration constants. Only the two-parameter family of these

solution obtained using C = D = 0 go over to the solutions to the lowest-order field equa-

tion, obtained from the M →∞ lagrangian, L0 = 1
2 θ̇

2; the other solutions are not captured

at any finite order of 1/M because for them the θ̇2 and θ̈2 terms are comparably large.

Since a local EFT is only meant to capture the full theory order-by-order in 1/M these ex-

ponential solutions should not be expected to be relevant to the low-energy approximation

of the full theory.
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3 Summary

We see from this simple example why no restriction generically need be placed on the

higher-derivative terms in an effective theory. In the regime where the effective theory

reliably captures the behaviour of the full theory, the terms involving higher derivatives

are systematically smaller than those involving fewer derivatives; a regime that does not

include the worrisome runaway solutions that higher-derivative equations usually imply.

The runaway solutions cannot be trusted in the regime where the effective theory must

agree with the dynamics of its UV completion.

An interesting exception to the general suppression of more derivatives in an effective

theory arises in the case of the DBI action [25], or the action for the relativistic point

particle, for which L ∼
√

1− ẋ2 can be trusted to all orders in ẋ2 even while neglecting its

higher derivatives, ẍ ' 0. In this case the ultra-relativistic limit where ẋ→ 1 is an example

of a self-consistent regime where higher derivatives are driven to zero, making it sensible

to work to all orders in ẋ while dropping any powers of ẍ and still-higher derivatives. (In

this case symmetries also dictate how the action depends on ẋ, to all orders.) It would be

interesting to find other examples of effective theories that share this property; theories

for which all derivatives are not suppressed by the same scale and so for which it is self-

consistent to consider actions that are non-trivial functions of X = (∂φ)2 even though it

is legitimate to neglect higher derivatives. It is for actions like these that restrictions on

higher-derivatives might conceivably arise in interesting and constraining ways.
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