16,735 research outputs found
The diatom genus Tetracyclus (Fragilariaceae, Bacillariophyta) from Chile
Copyright © 2014 Magnolia Press. Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0. The attached file is the published version of the article
The communication effects of art on corporate reputation: An exploratory study
This paper explores how the use of art and the role of the artist impacts on corporate reputation and business success. Drawing on data from two retailers this research finds that the use of art in communication has significant impact on corporate reputation and business success. Data suggest that artwork can be used in four ways: (1) as a basis of the design of merchandise being marketed, (2) as a form of advertising synonymous with the product, and (3) as a method of stimulating PR, controversy and word of mouth in the community and (4) the establishment of a unique identity. It is argued that each of these behaviours has contributed to these firms¿ corporate re putations and that in the process emergent goodwill has developed surrounding the artists and their work. Of particular value was the contribution the artists themselves lent to the brand¿s identity, image and corporate reputatio
Corrections to the nomenclature of genus Diatoma (Bacillariophyta: Fragilariaceae)
Copyright © 2015 Magnolia Press. Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 The attached file is the published version of the article
Pulse-Administered Toceranib Phosphate Plus Lomustine for Treatment of Unresectable Mast Cell Tumors in Dogs.
BackgroundNonresectable mast cell tumors (MCT) in dogs remain a therapeutic challenge, and investigation of novel combination therapies is warranted. Intermittent administration of tyrosine kinase inhibitors (TKI) combined with cytotoxic chemotherapy may effectively chemosensitize canine MCT while decreasing cost and adverse effects associated with either agent administered as monotherapy.Hypothesis/objectivesThe primary study objectives were to (1) identify the maximally tolerated dose (MTD), (2) determine the objective response rate (ORR) and (3) describe the adverse event profile of pulse-administered toceranib phosphate (TOC) combined with lomustine.AnimalsForty-seven client-owned dogs with measurable MCT.MethodsToceranib phosphate was given PO on days 1, 3 and 5 of a 21-day cycle at a target dosage of 2.75 mg/kg. Lomustine was given PO on day 3 of each cycle at a starting dosage of 50 mg/m(2) . All dogs were concurrently treated with diphenhydramine, omeprazole, and prednisone.ResultsThe MTD of lomustine was established at 50 mg/m(2) when combined with pulse-administered TOC; the dose-limiting toxicity was neutropenia. Forty-one dogs treated at the MTD were evaluable for outcome assessment. The ORR was 46% (4 complete response, 15 partial response) and the overall median progression-free survival (PFS) was 53 days (1 to >752 days). On multivariate analysis, variables significantly associated with improved PFS included response to treatment, absence of metastasis, and no previous chemotherapy.Conclusions and clinical importanceCombined treatment with pulse-administered TOC and lomustine generally is well tolerated and may be a reasonable treatment option for dogs with unresectable or metastatic MCT
Reading Trees
Copyright © 2014 Magnolia Press. Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0. The attached file is the published version of the articl
Multiple states of environmental regulation in well-mixed modle biospheres.
The Gaia hypothesis postulates that life influences Earth’s feedback mechanisms to form a self-regulating system. This provokes the question: how can global self-regulation evolve? Most models demonstrating environmental regulation involving life have relied on alignment between local selection and global regulation. In these models environment-improving individuals or communities spread to outcompete environment degrading individuals / communities, leading to global regulation, but this depends on local differences in environmental conditions. In contrast, well-mixed components of the Earth system, such as the atmosphere, lack local environmental differentiation. These previous models do not explain how global regulation can emerge in a system with no well-defined local environment, or where the local environment is overwhelmed by global effects. We present a model of self-regulation by ‘microbes’ in an environment with no spatial structure. These microbes affect an abiotic ‘temperature’ as a byproduct of metabolism.
We demonstrate that global self-regulation can arise in the absence of spatial structure in a diverse ecosystem without localised environmental effects. We find that systems can exhibit nutrient limitation and two temperature limitation regimes where the temperature is maintained at a near constant value. During temperature regulation, the total temperature change caused by the microbes is kept near constant by the total population expanding or contracting to absorb the impacts of new mutants on the average affect on the temperature per microbe. Dramatic shifts between low temperature regulation and high temperature regulation can occur when a mutant arises that causes the sign of the temperature effect to change. This result implies that self-regulating feedback loops can arise without the need for spatial structure, weakening criticisms of the Gaia hypothesis that state that with just one Earth, global regulation has no mechanism for developing because natural selection requires selection between multiple entitie
Gaian bottlenecks and planetary habitability maintained by evolving model biospheres: The ExoGaia model
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The search for habitable exoplanets inspires the question - how do habitable planets form? Planet habitability models traditionally focus on abiotic processes and neglect a biotic response to changing conditions on an inhabited planet. The Gaia hypothesis postulates that life influences the Earth's feedback mechanisms to form a self-regulating system, and hence that life can maintain habitable conditions on its host planet. If life has a strong influence, it will have a role in determining a planet's habitability over time. We present the ExoGaia model - a model of simple 'planets' host to evolving microbial biospheres. Microbes interact with their host planet via consumption and excretion of atmospheric chemicals. Model planets orbit a 'star' which provides incoming radiation, and atmospheric chemicals have either an albedo, or a heat-trapping property. Planetary temperatures can therefore be altered by microbes via their metabolisms. We seed multiple model planets with life while their atmospheres are still forming and find that the microbial biospheres are, under suitable conditions, generally able to prevent the host planets from reaching inhospitable temperatures, as would happen on a lifeless planet. We find that the underlying geochemistry plays a strong role in determining long-term habitability prospects of a planet. We find five distinct classes of model planets, including clear examples of 'Gaian bottlenecks' - a phenomenon whereby life either rapidly goes extinct leaving an inhospitable planet, or survives indefinitely maintaining planetary habitability. These results suggest that life might play a crucial role in determining the long-term habitability of planets.We thank the Gaia Charity and the University of Exeter for their support of this work
Skyrmions in a ferromagnetic Bose-Einstein condensate
The recently realized multicomponent Bose-Einstein condensates provide
opportunities to explore the rich physics brought about by the spin degrees of
freedom. For instance, we can study spin waves and phase separation,
macroscopic quantum tunneling, Rabi oscillations, the coupling between spin
gradients and superfluid flow, squeezed spin states, vortices and other
topological excitations. Theoretically, there have been already some studies of
the ground-state properties of these systems and their line-like vortex
excitations. In analogy with nuclear physics or the quantum Hall effect, we
explore here the possibility of observing point-like topological excitations or
skyrmions. These are nontrivial spin textures that in principle can exist in a
spinor Bose-Einstein condensate. In particular, we investigate the stability of
skyrmions in a fictitious spin-1/2 condensate of Rb87 atoms. We find that
skyrmions can exist in this case only as a metastable state, but with a
lifetime of the order of, or even longer than, the typical lifetime of the
condensate itself. In addition to determining the size and the lifetime of the
skyrmion, we also present its spin texture and finally briefly consider its
dynamical properties.Comment: 4 pages (REVtex), 3 PDF figures. See also cond-mat/000237
The genome of Spraguea lophii and the basis of host-microsporidian interactions
This is the final version of the article. Available from the publisher via the DOI in this record.Microsporidia are obligate intracellular parasites with the smallest known eukaryotic genomes. Although they are increasingly recognized as economically and medically important parasites, the molecular basis of microsporidian pathogenicity is almost completely unknown and no genetic manipulation system is currently available. The fish-infecting microsporidian Spraguea lophii shows one of the most striking host cell manipulations known for these parasites, converting host nervous tissue into swollen spore factories known as xenomas. In order to investigate the basis of these interactions between microsporidian and host, we sequenced and analyzed the S. lophii genome. Although, like other microsporidia, S. lophii has lost many of the protein families typical of model eukaryotes, we identified a number of gene family expansions including a family of leucine-rich repeat proteins that may represent pathogenicity factors. Building on our comparative genomic analyses, we exploited the large numbers of spores that can be obtained from xenomas to identify potential effector proteins experimentally. We used complex-mix proteomics to identify proteins released by the parasite upon germination, resulting in the first experimental isolation of putative secreted effector proteins in a microsporidian. Many of these proteins are not related to characterized pathogenicity factors or indeed any other sequences from outside the Microsporidia. However, two of the secreted proteins are members of a family of RICIN B-lectin-like proteins broadly conserved across the phylum. These proteins form syntenic clusters arising from tandem duplications in several microsporidian genomes and may represent a novel family of conserved effector proteins. These computational and experimental analyses establish S. lophii as an attractive model system for understanding the evolution of host-parasite interactions in microsporidia and suggest an important role for lineage-specific innovations and fast evolving proteins in the evolution of the parasitic microsporidian lifecycle.This work was supported by a BBSRC studentship to SEC (http://www.bbsrc.ac.uk), a Marie Curie postdoctoral fellowship to TAW (http://cordis.europa.eu/fp7/home_en.html) and a Royal Society University Research Fellowship to BAPW (http://royalsociety.org)
- …
