8,162 research outputs found

    Changing patterns of religious affiliation, church attendance and marriage across five areas of Europe since the early 1980s: trends and associations

    Get PDF
    This study draws on three waves of the European Values Survey (conducted between 1981 and 1984, between 1989 and 1993, and between 1999 and 2004) across five countries for which full data are available (Great Britain, Italy, the Netherlands, Northern Ireland, Spain, and Sweden) in order to address five research questions. Question one examined changes in religious affiliation. Across all five countries, the proportions of the non-affiliated increased. Question two examined changes in church attendance. Across all five countries, the proportions of the non-attenders increased. Question three examined changes in marital status. Across all five countries the proportions of the population checking the category 'married' declined, although in Spain the decline was marginal. Question four examined the association between religious affiliation and being married. The religious affiliated were more likely to be married than the non-affiliated. Question five examined the association between church attendance and being married. Weekly attenders were more likely to be married than the non-attenders. Overall these data support the close association between religion and marriage across five European countries (where there are very different religious climates) and support the hypothesis that changing religious values and changing family values go hand-in-hand

    Short Communication: Some Observations on the Role of Bradykinin in Immunity to Teladorsagia circumcincta in Sheep

    Get PDF
    Bradykinin is a physiologically active peptide involved in vasodilation and smooth muscle contraction and is previously shown to be increased in gastrointestinal mucus during nematode challenge in sheep. Here, it is shown that bradykinin in the abomasum is positively correlated with both mast cells and globule leukocytes in the abomasum, and that all three of these parameters are negatively associated with numbers of adult Teladorsagia circumcincta during the challenge of immune sheep. It is suggested that bradykinin either stimulates the degranulation of mast cells, or is released during this degranulation process, or both. Multiple regression showed that almost 60% of the variation of in adult T. circumcincta could be explained by two variables, bradykinin and T. circumcincta—specific IgG1 in plasma. This provides further evidence that bradykinin may be a mechanism of protective immunity in sheep, although its involvement in asthma and other allergic disorders raises questions about its role in unwanted immunopathology

    Memristive excitable cellular automata

    Full text link
    The memristor is a device whose resistance changes depending on the polarity and magnitude of a voltage applied to the device's terminals. We design a minimalistic model of a regular network of memristors using structurally-dynamic cellular automata. Each cell gets info about states of its closest neighbours via incoming links. A link can be one 'conductive' or 'non-conductive' states. States of every link are updated depending on states of cells the link connects. Every cell of a memristive automaton takes three states: resting, excited (analog of positive polarity) and refractory (analog of negative polarity). A cell updates its state depending on states of its closest neighbours which are connected to the cell via 'conductive' links. We study behaviour of memristive automata in response to point-wise and spatially extended perturbations, structure of localised excitations coupled with topological defects, interfacial mobile excitations and growth of information pathways.Comment: Accepted to Int J Bifurcation and Chaos (2011

    An improved history-match for layer spreading within the Sleipner plume including thermal propagation effects

    Get PDF
    The Sleipner CO2 storage operation has been injecting CO2 since 1996, and the growth of the plume has been intensively monitored using time-lapse seismic techniques. Detailed history-matching of the topmost CO2 layer has proven challenging. This paper summarizes results from a series of flow simulations examining two key parameters affecting CO2 mobility: permeability heterogeneity and fluid temperatures within the plume. The best match to the observed distribution of CO2 was achieved by including high permeability channels in the reservoir flow model, as observed on seismic data. Thermal models suggests that CO2 enters the top sand layer 7 °C warmer than the ambient reservoir. The resulting reduction in the density and viscosity of CO2 does not significantly improve the fit between seismic and simulation

    Investigating the Dynamics and Density Evolution of Returning Plasma Blobs from the 2011 June 7 Eruption

    Get PDF
    This work examines infalling matter following an enormous Coronal Mass Ejection (CME) on 2011 June 7. The material formed discrete concentrations, or blobs, in the corona and fell back to the surface, appearing as dark clouds against the bright corona. In this work we examined the density and dynamic evolution of these blobs in order to formally assess the intriguing morphology displayed throughout their descent. The blobs were studied in five wavelengths (94, 131, 171, 193 and 211 \AA) using the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA), comparing background emission to attenuated emission as a function of wavelength to calculate column densities across the descent of four separate blobs. We found the material to have a column density of hydrogen of approximately 2 ×\times 1019^{19} cm2^{-2}, which is comparable with typical pre-eruption filament column densities. Repeated splitting of the returning material is seen in a manner consistent with the Rayleigh-Taylor instability. Furthermore, the observed distribution of density and its evolution are also a signature of this instability. By approximating the three-dimensional geometry (with data from STEREO-A), volumetric densities were found to be approximately 2 ×\times 1014^{-14} g cm3^{-3}, and this, along with observed dominant length-scales of the instability, was used to infer a magnetic field of the order 1 G associated with the descending blobs.Comment: 9 pages, 13 figures, accepted for publication in Ap

    Anthelmintic properties of traditional African and Caribbean medicinal plants:identification of extracts with potent activity against <i>Ascaris suum</i> in vitro

    Get PDF
    Ascariasis affects more than 1 billion people worldwide, mainly in developing countries, causing substantial morbidity. Current treatments for Ascaris infection are based on mass drug administration (MDA) with synthetic anthelmintic drugs such as albendazole, however continual re-infection and the threat of drug resistance mean that complementary treatment options would be highly valuable. Here, we screened ethanolic extracts from 29 medicinal plants used in Africa (Ghana) and the Caribbean (US Virgin Islands) for in vitro anthelmintic properties against Ascaris suum, a swine parasite that is very closely related to the human A. lumbricoides. A wide variety of activities were seen in the extracts, from negligible to potent. Extracts from Clausena anisata, Zanthoxylum zanthoxyloides and Punica granatum were identified as the most potent with EC50 values of 74, 97 and 164 μg/mL, respectively. Our results encourage further investigation of their use as complementary treatment options for ascariasis, alongside MDA

    A Rapid and Computationally Inexpensive Method to Virtually Implant Current and Next-Generation Stents into Subject-Specific Computational Fluid Dynamics Models

    Get PDF
    Computational modeling is often used to quantify hemodynamic alterations induced by stenting, but frequently uses simplified device or vascular representations. Based on a series of Boolean operations, we developed an efficient and robust method for assessing the influence of current and next-generation stents on local hemodynamics and vascular biomechanics quantified by computational fluid dynamics. Stent designs were parameterized to allow easy control over design features including the number, width and circumferential or longitudinal spacing of struts, as well as the implantation diameter and overall length. The approach allowed stents to be automatically regenerated for rapid analysis of the contribution of design features to resulting hemodynamic alterations. The applicability of the method was demonstrated with patient-specific models of a stented coronary artery bifurcation and basilar trunk aneurysm constructed from medical imaging data. In the coronary bifurcation, we analyzed the hemodynamic difference between closed-cell and open-cell stent geometries. We investigated the impact of decreased strut size in stents with a constant porosity for increasing flow stasis within the stented basilar aneurysm model. These examples demonstrate the current method can be used to investigate differences in stent performance in complex vascular beds for a variety of stenting procedures and clinical scenarios
    corecore