3,410 research outputs found

    Conjugacy of one-dimensional one-sided cellular automata is undecidable

    Full text link
    Two cellular automata are strongly conjugate if there exists a shift-commuting conjugacy between them. We prove that the following two sets of pairs (F,G)(F,G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable: (i) pairs where FF has strictly larger topological entropy than GG, and (ii) pairs that are strongly conjugate and have zero topological entropy. Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata FF and GG over a full shift: Are FF and GG conjugate? Is FF a factor of GG? Is FF a subsystem of GG? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.Comment: 12 pages, 2 figures, accepted for SOFSEM 201

    An evaluation of Thiomicrospira, Hydrogenovibrio and Thioalkalimicrobium: reclassification of 4 species of Thiomicrospira to each Thiomicrorhabdus gen. nov. and Hydrogenovibrio, and reclassification of all 4 species of Thioalkalimicrobium to Thiomicrospira.

    Get PDF
    Thiomicrospira spp. are small sulfur-oxidising chemolithoautotrophic members of the Gammaproteobacteria. Whilst the type species Tms. pelophila and closely related Tms. thyasirae exhibit canonical spiral morphology under sub-optimal growth conditions, most species are vibrios or rods. The 16S rRNA gene diversity is vast, with identities as low as 91.6 % to Tms. pelophila versus Tms. frisia, for example. Thiomicrospira was examined with closely related genera Hydrogenovibrio and Thioalkalimicrobium and, to rationalise organisms on the basis of the 16S rRNA gene phylogeny, physiology and morphology, we reclassify Tms. kuenenii, Tms. crunogena, Tms. thermophila and Tms. halophila to Hydrogenovibrio kuenenii comb. nov., H. crunogenus corrig. comb. nov., H. thermophilus corrig. comb. nov., and H. halophilus corrig. comb. nov. We reclassify Tms. frisia, Tms. arctica, Tms. psychrophila and Tms. chilensis to Thiomicrorhabdus gen. nov., as Tmr. frisia comb. nov., Tmr. arctica comb. nov., Tmr. psychrophila comb. nov. and Tmr. chilensis comb. nov. – the type species of Thiomicrorhabdus is Tmr. frisia. We demonstrate Thioalkalimicrobium spp. fall in the genus Thiomicrospira sensu stricto, thus reclassifying them to Tms. aerophila corrig. comb. nov., Tms. microaerophila corrig. comb. nov., Tms. cyclica corrig. comb. nov.and Tms. sibirica corrig. comb. nov. We provide emended descriptions of the genera Thiomicrospira and Hydrogenovibrio and of Tms. thyasirae

    Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain southeastern Australian methane emissions

    Get PDF
    This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E). The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS) and the CSIRO Conformal-Cubic Atmospheric Model (CCAM). Radon is also simulated and used to reduce the impact of transport differences between the models and observations. Comparisons are made for air samples that have traversed the Australian continent. All six emission scenarios give modelled concentrations that are broadly consistent with those observed. There are three notable mismatches, however. Firstly, scenarios that incorporate interannually varying biomass burning emissions produce anomalously high methane concentrations at Cape Grim at times of large fire events in southeastern Australia, most likely due to the fire methane emissions being unrealistically input into the lowest model level. Secondly, scenarios with wetland methane emissions in the austral winter overestimate methane concentrations at Cape Grim during wintertime while scenarios without winter wetland emissions perform better. Finally, all scenarios fail to represent a~methane source in austral spring implied by the observations. It is possible that the timing of wetland emissions in the scenarios is incorrect with recent satellite measurements suggesting an austral spring (September–October–November), rather than winter, maximum for wetland emissions. © Author(s) 2015

    Glucocorticoid treatment in patients with newly diagnosed immune thrombocytopenia switches CD14(++)CD16(+) intermediate monocytes from a pro-inflammatory to an anti-inflammatory phenotype

    Get PDF
    Immune thrombocytopenia (ITP) is thought to result from an aberrant adaptive autoimmune response, involving autoantibodies, B and T lymphocytes, directed at platelets and megakaryocytes. Previous reports have demonstrated skewed CD4+ T-helper subset distribution and enhanced production of pro-inflammatory cytokines such as interleukin 17A and interferon gamma. The role of monocytes (MCs) in ITP is less widely described, but innate immune cells have a role in shaping CD4+ T-cell phenotypes. Glucocorticoids (GCs) are commonly used for first-line ITP treatment and modulate a broad range of immune cells including T cells and MCs. Using multiparameter flow cytometry analysis, we demonstrate the expansion of intermediate MCs (CD14++CD16+ ) in untreated patients with newly diagnosed ITP, with these cells displaying a pro-inflammatory phenotype, characterised by enhanced expression of CD64 and CD80. After 2 weeks of prednisolone treatment (1 mg/kg daily), the proportion of intermediate MCs reduced, with enhanced expression of the anti-inflammatory markers CD206 and CD163. Healthy control MCs were distinctly different than MCs from patients with ITP before and after GC treatment. Furthermore, the GC-induced phenotype was not observed in patients with chronic ITP receiving thrombopoietin receptor agonists. These data suggest a role of MCs in ITP pathogenesis and clinical response to GC therapy

    Radon: a universal baseline indicator at sites with contrasting physical settings

    Get PDF
    The primary goal of World Meteorological Organisation Global Atmosphere Watch (WMO‐GAW) baseline stations is systematic global monitoring of chemical composition of the atmosphere, requiring a reliable, consistent and unambiguous approach for the identification of baseline air. Premier stations in the GAW baseline network span a broad range of physical settings, from remote marine to high‐altitude continental sites, necessitating carefully tailored site‐specific requirements for baseline sampling, data selection, and analysis. Radon‐222 is a versatile and unambiguous terrestrial tracer, widely‐used in transport and mixing studies. Since the majority of anthropogenic pollution sources also have terrestrial origins, radon has become a popular addition to the ‘baseline selection toolkit’ at numerous GAW stations as a proxy for ‘pollution potential’. In the past, detector performance and postprocessing methods necessitated the adoption of a relaxed (e.g. 100 mBq m‐3) radon threshold for minimal terrestrial influence, intended to be used in conjunction with other baseline criteria and analysis procedures, including wind speed, wind direction, particle number, outlier rejection and filtering. However, recent improvements in detector sensitivity, stability and post‐processing procedures have reduced detection limits below 10 mBq m‐3 at Cape Grim and to 25 mBq m‐3 at other baseline stations. Consequently, for suitably sensitive instruments (such as the ANSTO designed and built two‐filter dual‐flow‐loop detectors), radon concentrations alone can be used to unambiguously identify air masses that have been removed from terrestrial sources (at altitude or over ice), or in equilibrium with the ocean surface, for periods of >2‐3 weeks (radon ≀ 40 mBq m‐3). Potentially, radon observations alone can thus provide a consistent and universal (site independent) means for baseline identification. Furthermore, for continental sites with complex topography and meteorology, where true ‘baseline’ conditions may never occur, radon can be used to indicate the least terrestrially‐perturbed air masses, and provide a means by which to apply limits to the level of ‘acceptable terrestrial influence’ for a given application. We demonstrate the efficacy of the radon‐based selection at a range of sites in contrasting physical settings, including: Cape Grim (Tasmania), Cape Point (South Africa), Mauna Loa (Hawaii), Jungfraujoch (Switzerland) and Schneefernerhaus (Germany).Bureau of Meteorology and CSIRO Oceans and Atmosphere,Climate Science Centre

    Hysteresis phenomenon in turbulent convection

    Full text link
    Coherent large-scale circulations of turbulent thermal convection in air have been studied experimentally in a rectangular box heated from below and cooled from above using Particle Image Velocimetry. The hysteresis phenomenon in turbulent convection was found by varying the temperature difference between the bottom and the top walls of the chamber (the Rayleigh number was changed within the range of 107−10810^7 - 10^8). The hysteresis loop comprises the one-cell and two-cells flow patterns while the aspect ratio is kept constant (A=2−2.23A=2 - 2.23). We found that the change of the sign of the degree of the anisotropy of turbulence was accompanied by the change of the flow pattern. The developed theory of coherent structures in turbulent convection (Elperin et al. 2002; 2005) is in agreement with the experimental observations. The observed coherent structures are superimposed on a small-scale turbulent convection. The redistribution of the turbulent heat flux plays a crucial role in the formation of coherent large-scale circulations in turbulent convection.Comment: 10 pages, 9 figures, REVTEX4, Experiments in Fluids, 2006, in pres

    Towards a universal “baseline” characterisation of air masses for high- and low-altitude observing stations using Radon-222

    Get PDF
    We demonstrate the ability of atmospheric radon concentrations to reliably and unambiguously identify local and remote terrestrial influences on an air mass, and thereby the potential for alteration of trace gas composition by anthropogenic and biogenic processes. Based on high accuracy (lower limit of detection 10–40 mBq m–3), high temporal resolution (hourly) measurements of atmospheric radon concentration we describe, apply and evaluate a simple two-step method for identifying and characterising constituent mole fractions in baseline air. The technique involves selecting a radon-based threshold concentration to identify the “cleanest” (least terrestrially influenced) air masses, and then performing an outlier removal step based on the distribution of constituent mole fractions in the identified clean air masses. The efficacy of this baseline selection technique is tested at three contrasting WMO GAW stations: Cape Grim (a coastal low-altitude site), Mauna Loa (a remote high-altitude island site), and Jungfraujoch (a continental high-altitude site). At Cape Grim and Mauna Loa the two-step method is at least as effective as more complicated methods employed to characterise baseline conditions, some involving up to nine steps. While it is demonstrated that Jungfraujoch air masses rarely meet the baseline criteria of the more remote sites, a selection method based on a variable monthly radon threshold is shown to produce credible “near baseline” characteristics. The seasonal peak-to-peak amplitude of recent monthly baseline CO2 mole fraction deviations from the long-term trend at Cape Grim, Mauna Loa and Jungfraujoch are estimated to be 1.1, 6.0 and 8.1 ppm, respectively

    Environmental Temperature Affects Prevalence of Blood Parasites of Birds on an Elevation Gradient: Implications for Disease in a Warming Climate

    Get PDF
    Background: The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change.\ud \ud Methodology/Principal Findings: We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma) in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season.\ud \ud Conclusions/Significance: Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change

    Speculation on the origin of sub-baseline excursions of CH4 at Cape Grim

    Get PDF
    The Advanced Global Atmospheric Gases Experiment (AGAGE) program has historically measured in situ methane (CH4 ) at Cape Grim via gas chromatography with flame ionization detection (GC-FID) in 40 minutely grab samples. By adding continuous, high precision in situ measurements of CH4 (Picarro cavity ring-down spectroscopy [CRDS]) at both Cape Grim, Tasmania, and Casey, Antarctica, a new feature has become apparent in the Cape Grim CH4 record. During the austral summer (December to February), the Cape Grim CH4 record periodically drops below baseline. For example, in Figure 1, a number of sustained episodes of depressed CH4 concentration can be seen below the baseline selected data shown in red. Notably, these episodes are also seen in the GC-FID record. In this presentation, we examine these sub-baseline excursions of CH4 . In conjunction with meteorology and a variety of other chemical species measured at Cape Grim, including radon, ozone, hydrogen and ethane, we speculate on a number of possible mechanisms that might be responsible for these dips in CH4 mixing ratio

    The effects of applied water at various fractions of measured evapotranspiration on reproductive growth and water productivity of Thompson Seedless grapevines

    Get PDF
    The reproductive growth and water productivity (WPb) of Thompson Seedless grapevines were measured as a function of applied water amounts at various fractions of measured grapevine ETc for a total of eight irrigation treatments. Shoots were harvested numerous times during the growing season to calculate water productivity. Berry weight was maximized at the 0.6–0.8 applied water treatments across years. As applied water amounts increased soluble solids decreased. Berry weight measured at veraison and harvest was a linear function of the mean midday leaf water potential measured between anthesis and veraison and anthesis and harvest, respectively. As applied water amounts increased up to the 0.6–0.8 irrigation treatments there was a significant linear increase in yield. Yields at greater applied water amounts either leveled off or decreased. The reduction in yield on either side of the yearly maximum was due to fewer numbers of clusters per vine. Maximum yield occurred at an ETc ranging from 550 to 700 mm. Yield per unit applied water and WPb increased as applied water decreased. The results from this study demonstrated that Thompson Seedless grapevines can be deficit irrigated, increasing water use efficiency while maximizing yields
    • 

    corecore