6,783 research outputs found

    Reconstruction of the Adaptable Deployable Entry and Placement Technology Sounding Rocket One Flight Test

    Get PDF
    The Adaptable Deployable Entry and Placement Technology Sounding Rocket One flight test is a demonstration experiment for deployable atmospheric decelerator technologies. The suborbital flight test occurred on 12 September 2018, at the White Sands Missile Range. Data from on-board and ground-based sensors were collected, from which the as-flown trajectory was reconstructed using an iterative extended Kalman filter-smoother. This paper describes the methodology, test vehicle instrumentation, and data analysis results from the flight test trajectory reconstruction

    Optical Tweezers as an Effective Tool for Spermatozoa Isolation from Mixed Forensic Samples

    Get PDF
    A single focus optical tweezer is formed when a laser beam is launched through a high numerical aperture immersion objective. This objective focuses the beam down to a diffraction-limited spot, which creates an optical trap where cells suspended in aqueous solutions can be held fixed. Spermatozoa, an often probative cell type in forensic investigations, can be captured inside this optical trap and dragged one by one across millimeter-length distances in order to create a cluster of cells which can be subsequently drawn up into a capillary for collection. Sperm cells are then ejected onto a sterile cover slip, counted, and transferred to a tube for DNA analysis workflow. The objective of this research was to optimize sperm cell collection for maximum DNA yield, and to determine the number of trapped sperm cells necessary to produce a full STR profile. A varying number of sperm cells from both a single-source semen sample and a mock sexual assault sample were isolated utilizing optical tweezers and processed using conventional STR analysis methods. Results demonstrated that approximately 50 trapped spermatozoa were required to obtain a consistently full DNA profile. A complete, single-source DNA profile was also achieved by isolating sperm cells via optical trapping from a mixture of sperm and vaginal epithelial cells. Based on these results, optical tweezers are a viable option for forensic applications such as separation of mixed populations of cells in forensic evidence

    Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development

    Full text link
    In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR–to–NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR–expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus. Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity.IOS-1354935 - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); 1262934 - National Science Foundation (NSF); 2014-BSP - Arnold and Mabel Beckman Foundatio

    Antigen-presenting particle technology using inactivated surface-engineered viruses: induction of immune responses against infectious agents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developments in cell-based and gene-based therapies are emerging as highly promising areas to complement pharmaceuticals, but present day approaches are too cumbersome and thereby limit their clinical usefulness. These shortcomings result in procedures that are too complex and too costly for large-scale applications. To overcome these shortcomings, we described a protein delivery system that incorporates over-expressed proteins into viral particles that are non-infectious and stable at room temperature. The system relies on the biological process of viral egress to incorporate cellular surface proteins while exiting their host cells during lytic and non-lytic infections.</p> <p>Results</p> <p>We report here the use of non-infectious surface-engineered virion particles to modulate immunity against three infectious disease agents – human immunodeficiency virus type 1 (HIV-1), herpes simplex virus (HSV), and Influenza. Surface-engineering of particles are accomplished by genetic modification of the host cell surface that produces the egress budding viral particle. Human peripheral blood lymphocytes from healthy donors exposed to CD80/B7.1, CD86/B7.2, and/or antiCD3 single-chain antibody surface-engineered non-infectious HIV-1 and HSV-2 particles stimulate T cell proliferation, whereas particles released from non-modified host cells have no T cell stimulatory activity. In addition to T cell proliferation, HIV-based particles specifically suppress HIV-1 replication (both monocytotropic and lymphocytotropic strains) 55 to 96% and HSV-based particles specifically induce cross-reactive HSV-1/HSV-2 anti-herpes virus antibody production. Similar surface engineering of influenza-based particles did not modify the intrinsic ability of influenza particles to stimulate T cell proliferation, but did bestow on the engineered particles the ability to induce cross-strain anti-influenza antibody production.</p> <p>Conclusion</p> <p>We propose that non-infectious viral particles can be surface-engineered to produce antigen-presenting particles that mimic antigen-presenting cells to induce immune responses in human peripheral blood lymphocytes. The viral particles behave as "biological carriers" for recombinant proteins, thereby establishing a new therapeutic paradigm for molecular medicine.</p

    Measuring Actual Behaviors in HCI Research – A call to Action and an Example

    Get PDF
    There have been repeated calls for studies in behavioral science and human-computer interaction (HCI) research to measure participants’ actual behaviors. HCI research studies often use multiple constructs as perceived measures of behavior, which are captured using participants’ self-reports on surveys. Response biases, however, are a widespread threat to the validity of self-report measures. To mitigate this threat to validity, we propose that studies in HCI measure actual behaviors in appropriate contexts rather than solely perceptions. We report an example of using movements that reflect both actual behavior and behavioral changes measured within a health care IS usage context, specifically the detection and alleviation of neuromuscular degenerative disease. We propose and test a method of monitoring mouse-cursor movements to detect hand tremors in real time when individuals are using websites. Our work suggests that analyzing hand movements as an actual (rather than perceptual) measure of usage could enrich other areas of IS research (e.g., technology acceptance, efficacy, fear, etc.), in which perceptions of states and behavior are measured post hoc to the interaction and subject to the threats of various forms of response bias

    Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli

    Get PDF
    Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs) could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA) polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffnesschondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1) in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process

    Multimodal Imaging of Photoreceptor Structure in Choroideremia

    Get PDF
    Purpose Choroideremia is a progressive X-linked recessive dystrophy, characterized by degeneration of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors. We examined photoreceptor structure in a series of subjects with choroideremia with particular attention to areas bordering atrophic lesions. Methods Twelve males with clinically-diagnosed choroideremia and confirmed hemizygous mutations in the CHM gene were examined. High-resolution images of the retina were obtained using spectral domain optical coherence tomography (SD-OCT) and both confocal and non-confocal split-detector adaptive optics scanning light ophthalmoscope (AOSLO) techniques. Results Eleven CHM gene mutations (3 novel) were identified; three subjects had the same mutation and one subject had two mutations. SD-OCT findings included interdigitation zone (IZ) attenuation or loss in 10/12 subjects, often in areas with intact ellipsoid zones; RPE thinning in all subjects; interlaminar bridges in the imaged areas of 10/12 subjects; and outer retinal tubulations (ORTs) in 10/12 subjects. Only split-detector AOSLO could reliably resolve cones near lesion borders, and such cones were abnormally heterogeneous in morphology, diameter and density. On split-detector imaging, the cone mosaic terminated sharply at lesion borders in 5/5 cases examined. Split-detector imaging detected remnant cone inner segments within ORTs, which were generally contiguous with a central patch of preserved retina. Conclusions Early IZ dropout and RPE thinning on SD-OCT are consistent with previously published results. Evidence of remnant cone inner segments within ORTs and the continuity of the ORTs with preserved retina suggests that these may represent an intermediate state of retinal degeneration prior to complete atrophy. Taken together, these results supports a model of choroideremia in which the RPE degenerates before photoreceptors

    Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept

    Get PDF
    A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown
    • …
    corecore