50,905 research outputs found

    Lattice quark propagator with staggered quarks in Landau and Laplacian gauges

    Get PDF
    We report on the lattice quark propagator using standard and improved Staggered quark actions, with the standard, Wilson gauge action. The standard Kogut-Susskind action has errors of \oa{2} while the ``Asqtad'' action has \oa{4}, \oag{2}{2} errors. The quark propagator is interesting for studying the phenomenon of dynamical chiral symmetry breaking and as a test-bed for improvement. Gauge dependent quantities from lattice simulations may be affected by Gribov copies. We explore this by studying the quark propagator in both Landau and Laplacian gauges. Landau and Laplacian gauges are found to produce very similar results for the quark propagator.Comment: 11 pages, 15 figure

    A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition

    Full text link
    The Koopman operator is a linear but infinite dimensional operator that governs the evolution of scalar observables defined on the state space of an autonomous dynamical system, and is a powerful tool for the analysis and decomposition of nonlinear dynamical systems. In this manuscript, we present a data driven method for approximating the leading eigenvalues, eigenfunctions, and modes of the Koopman operator. The method requires a data set of snapshot pairs and a dictionary of scalar observables, but does not require explicit governing equations or interaction with a "black box" integrator. We will show that this approach is, in effect, an extension of Dynamic Mode Decomposition (DMD), which has been used to approximate the Koopman eigenvalues and modes. Furthermore, if the data provided to the method are generated by a Markov process instead of a deterministic dynamical system, the algorithm approximates the eigenfunctions of the Kolmogorov backward equation, which could be considered as the "stochastic Koopman operator" [1]. Finally, four illustrative examples are presented: two that highlight the quantitative performance of the method when presented with either deterministic or stochastic data, and two that show potential applications of the Koopman eigenfunctions

    Highly-improved lattice field-strength tensor

    Get PDF
    We derive an O(a^4)-improved lattice version of the continuum field-strength tensor. Discretization errors are reduced via the combination of several clover terms of various sizes, complemented by tadpole improvement. The resulting improved field-strength tensor is used to construct O(a^4)-improved topological charge and action operators. We compare the values attained by these operators as we cool several configurations to self-duality with a previously defined highly-improved action and assess the relative scale of the remaining discretization errors.Comment: 22 pages, 7 postscript figure

    New HiggsBounds from LEP and the Tevatron

    Full text link
    We review the program HiggsBounds that tests theoretical predictions of models with arbitrary Higgs sectors against the exclusion bounds obtained from the Higgs searches at LEP and the Tevatron. We explicitly list the bounds that have been added after the first release of HiggsBounds.Comment: 4 pages, talk given at SUSY09, Boston, June 200

    Gravitational Acceleration of Spinning Bodies From Lunar Laser Ranging Measurements

    Get PDF
    The Sun's relativistic gravitational gradient accelerations of Earth and Moon, dependent on the motions of the latter bodies, act upon the system's internal angular momentum. This spin-orbit force (which plays a part in determining the gravity wave signal templates for astrophysical sources) slightly accelerates the Earth-Moon system as a whole, but it more robustly perturbs that system's internal dynamics with a 5 cm, synodically oscillating range contribution which is presently measured to 4 mm precision by more than three decades of lunar laser ranging.Comment: 10 pages, PCTex32.v3.

    Forecasting the price dynamics in the markets − benchmark prices (using the example of the interbank credit market and the bond market)

    Get PDF
    This article proposes an algorithm for forecasting benchmark prices in the markets price targets, an example of forecasting the average interest rate of BID on the interbank credit market of Ukraine for operations in the national currency for a period of 1 month. For the calculation, data for October-November 2015 and MayJune 2016 were adopted, since during these periods a sharp and predictable change in this rate was observed. The results of calculations showed that the proposed approach to the forecast of interest rates on the interbank market should be used when forecasting price dynamics in other markets – benchmark prices

    Lunar science from lunar laser ranging

    Get PDF
    Seventeen years of lunar ranging data have been analyzed to determine lunar second-degree moment differences, third-degree gravitational harmonics, Love number, rotational dissipation and retroreflector coordinates
    corecore