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by tadpole improvement. The resulting improved field-strength tensor is used to construct O(a4)-
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I. INTRODUCTION

Lattice gauge theory has shown itself to be an extremely useful tool for studying
non-perturbative physics. Its success is founded on the ability to systematically remove
errors introduced by the discretization of space-time. The magnitude of such errors are
determined by the lattice spacing a. In the continuum limit a → 0 these error terms vanish,
and so one could expect to asymptotically approach continuum physics by moving to finer
lattice spacings. Unfortunately the computational cost increases significantly as the spacing
decreases.

It is advantageous to ‘improve’ operators by identifying and algebraically eliminating
discretization errors from their lattice definitions [1]. In particular, calculations of the
Yang-Mills action based upon the strategic combination of several different Wilson loop
terms and the reduction of non-classical errors by tadpole improvement [2] have demon-
strated a significant decrease in deviations from expected continuum physics in smoothing
algorithms such as cooling and smearing (see for instance Ref. [3] and references therein).
In this paper we consider the construction of O(a4)-improved gluon field-strength tensors,
Fµν , from which both the topological charge density and the action may be constructed. In
the following we refer to such an action as the “reconstructed action”.

The accuracy of our improved operators is investigated by calculating the action, the
reconstructed action, and the topological charge on an ensemble of field configurations.
We then cool these rough configurations to produce highly self-dual configurations with a
range of topological charges. Thermalization and cooling are carried out by use of parallel
algorithms with appropriate link partitioning [4]. Comparisons of the topological charge Q,
and action normalized to the single-instanton action, S/S0, provide quantitative measures
of the merit of each of the improvement schemes considered.

This paper is set out as follows: In Section II we look at the lattice definitions of the
action and topological charge operators and give a brief discussion of the construction of
the O(a4)-improved forms of these operators [5]. In Section III we proceed to describe the
construction of an analogously improved lattice version of the field-strength tensor, Fµν . This
tensor is used to construct an improved topological charge operator and the reconstructed
action. In Section V we use the cooling of gauge-fields on the lattice to determine which form
of improvement gives the most continuum-like results, and compare the standard improved
action with the reconstructed action to verify consistency. Our results and conclusions are
presented in Section VI.

II. LATTICE ACTION AND TOPOLOGICAL CHARGE

A. Wilson Action

The lattice version of the Yang-Mills action was first proposed by Wilson [6]. The action
is calculated from the plaquette, a closed product of four link operators incorporating the
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link Uµ,

SWil = β
∑

x

∑

µ<ν

(

1 −
1

N
ReTrW (1×1)

µν

)

, (1)

for an SU(N) field theory where the plaquette operator W (1×1)
µν is

W (1×1)
µν = Uµ(x)Uν(x + aµ̂)U †

µ(x + aν̂)U †
ν(x) . (2)

The link variables Uµ(x) are defined by the Schwinger line integral

Uµ(x) = P exp
{

ig
∫ x+aµ

x
dzAµ(z)

}

, (3)

and are in general non-Abelian (hence the P on the right-hand side of Eq. (3) to denote
path-ordering). Let us define W (m×n)

µν to be the closed loop product in the µ − ν plane
with extent m lattice spacings in the µ-direction and n lattice spacings in the ν-direction.
Therefore W (1×1)

µν is the usual plaquette, W (1×2)
µν is an (a × 2a) loop

W (1×2)
µν = Uµ(x)Uν(x + aµ̂)Uν(x + aµ̂ + aν̂)U †

µ(x + 2aν̂)U †
ν(x + aν̂)U †

ν(x) , (4)

and so on. The Wilson action based on the plaquette for QCD (i.e., N = 3) expanded
around x0, the centre of the plaquette, may be written as follows

SWil = β
∑

x0

∑

µ<ν

[

1 −
1

N
ReTrW (1×1)

µν (x0)
]

,

= β
∑

x0

∑

µ<ν

[

1 − 1 +
a4g2

6
TrF 2

µν(x0) + O(g2a6) + O(g4a6)

]

,

= β
∑

x0

∑

µ<ν

[

a4g2

6
TrF 2

µν(x0) + O(g2a6) + O(g4a6)

]

,

= a4
∑

x0

∑

µ<ν

[

TrF 2
µν(x0) + O(a2) + O(g2a2)

]

, (setting β =
6

g2
),

= a4
∑

x0

∑

µ,ν

[

1

2
TrF 2

µν(x0) + O(a2) + O(g2a2)
]

, (5)

which reproduces the continuum action to O(a2). We note that the path-ordering is cru-
cial to obtaining the non-abelian Fµν = ∂µAν−∂νAµ+ig[Aµ, Aν ] with errors of order O(g2a2).

In this investigation we use cooling to eliminate the high-frequency components of the
gauge fields on the lattice. This reveals topological structures which correspond with classical
minima of the action. The cooling algorithm works by calculating the local action at each
lattice link, and updating the link to minimize this action. However the discretization errors
inherent in the Wilson action cause the cooling algorithm to consistently underestimate the
action at each lattice link [7]. As a result the link updates do not accurately reflect the
true structure of the gauge fields, leading to the destabilization of non-trivial topological
structures (instantons and anti-instantons).
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B. Improving the Action

The standard Wilson plaquette action, SWil, contains deviations from the continuum
Yang-Mills action of order O(a2) and O(g2a2). This problem may be remedied by improving
the action. Tree-level improvement is a simple and effective means of eliminating lowest-
order discretization errors by calculating the action from a combination of, for instance, the
plaquette, 2a × a, and a × 2a rectangles. Since the plaquette and rectangles have different
O(a2) errors they may be added in a linear combination in such a way that the leading
error terms cancel and one is left with the term corresponding to the Yang-Mills action plus
O(a4) and O(g2a2) errors.

The form for a tree-level improved action can be easily determined from the quantities

1

3
ReTrW (1×1)

µν (x0) = 1 −
a4g2

6
TrF 2

µν(x0) −
a6g2

72
TrFµν(x0)

(

∂2
µ + ∂2

ν

)

Fµν(x0)

+O(g2a8) + O(g4a6) , (6)

1

3
ReTrW (2×1)

µν (x0) = 1 −
4a4g2

6
TrF 2

µν(x0) −
4a6g2

72
TrFµν(x0)

(

4∂2
µ + ∂2

ν

)

Fµν(x0)

+O(g2a8) + O(g4a6) , (7)

1

3
ReTrW (1×2)

µν (x0) = 1 −
4a4g2

6
TrF 2

µν(x0) −
4a6g2

72
TrFµν(x0)

(

∂2
µ + 4∂2

ν

)

Fµν(x0)

+O(g2a8) + O(g4a6) . (8)

Henceforth we shall make use of the definition

P (m×n)
µν (x) ≡

1

3
ReTrW (m×n)

µν (x). (9)

We can therefore readily see that the O(a2) terms may be eliminated from the action by
making the following construction

SImp =
5

3
β
∑

x

∑

µ<ν

[

(

1 − P (1×1)
µν (x0)

)

−
1

20

(

1 − P (2×1)
µν (x0)

)

−
1

20

(

1 − P (1×2)
µν (x0)

)

]

,

= a4
∑

x

∑

µ,ν

[

1

2
TrF 2

µν(x0) + O(a4) + O(g2a2) ,
]

(setting β =
6

g2
),

which reproduces the continuum action to O(a4) and O(g2a2).

This process eliminates classical error terms of order O(a2) arising from the finite lattice
spacing. Non-classical O(g2a2) errors arising from self-couplings of the gluon fields may be
dealt with to some extent by the process of tadpole improvement [2]. Due to the different
numbers of links in plaquettes, rectangles, and other possible choices of Wilson loop, one
redefines the value of each link by scaling it by the mean link u0 (to account for the signifi-
cant tadpole-style self-interactions of the gluon fields introduced on the lattice via the link

4



operators). In essence u0 is an estimate of the sum of these unwanted tadpole terms, after
the leading O(g) terms in the links are factored out [2]. Scaling the links by the mean link

Uµ(x) →
Uµ(x)

u0
, (10)

improves the accuracy of the expansions above. We use the plaquette measure

u0 =
〈

P (1×1)
µν (x)

〉
1

4

x,µ<ν
, (11)

which is updated after every sweep of cooling. When we include tadpole improvement
factors, to correct for the difference between the numbers of links in the plaquette and the
rectangular Wilson loops, the improved action takes the long-established form [2]

SImp =
5

3
β
∑

x

∑

µ<ν

[

(

1 − P (1×1)
µν (x0)

)

−
1

20u2
0

(

1 − P (2×1)
µν (x0)

)

−
1

20u2
0

(

1 − P (1×2)
µν (x0)

)

]

.

(12)

There is no reason why the tree-level improvement scheme needs to stop at this point.
In principle it can be extended to arbitrary orders. For example, de Forcrand et al. [5] have
used tree-level improvement to construct a lattice action which eliminates O(a4) errors, by
using combinations of up to five Wilson loop operators. These five loops, which we denote
as L1, ..., L5, have dimensions (1× 1), (1× 2), (2× 2), (1× 3), and (3× 3). Of course, in the
case of rectangular loops m 6= n we average the contribution of the loops in each direction.
Hence we define

L1 ≡ P (1×1)
µν ,

L2 ≡ P (2×2)
µν ,

L3 ≡
1

2

{

P (2×1)
µν + P (1×2)

µν

}

,

L4 ≡
1

2

{

P (3×1)
µν + P (1×3)

µν

}

,

L5 ≡ P (3×3)
µν .

The improved action of de Forcrand et al. can then be written in the form

S =
5
∑

i=1

1

(m2n2)
ciSi , (13)

where Si is the action calculated by inserting the loop Li in place of Uµν in the definition
of the Wilson action, Eq. (1), where m and n are the dimensions of the loop Li, and where
the ci are improvement constants which control how much each loop contributes to the total
improved action. In our work we explicitly include tadpole improvement factors,

1

u
(2m+2n−4)
0

, (14)

whereas de Forcrand et al. left these factors as unity in Eq. (13). Our experience is
that tadpole improvement factors are beneficial in the early stages of cooling and remain
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beneficial even as u0 → 1.

The values of the improvement constants which eliminate order O(a4) tree-level error
terms are

c1 = (19 − 55c5)/9 ,

c2 = (1 − 64c5)/9 ,

c3 = (640c5 − 64)/45 ,

c4 = 1/5 − 2c5 ,

where c5 is a free variable. By adjusting c5 we create different O(a4)-improved actions,
which in general will have different O(a6) error terms. This means that we can attempt to
minimize O(a6) errors by tuning c5. If we set c5 = 1/10, then c3 = c4 = 0 creating a “3-loop”
action, i.e., an action constructed from three of the five loops. Setting c5 = 0 we create a
“4-loop” improved action. To construct a specific 5-loop action, de Forcrand et al. chose
to set c5 = 1/20, halfway between the 3-loop and 4-loop values to stabilize single instanton
sizes under cooling. These so-called 3-loop, 4-loop, and 5-loop improved actions are all free
of O(a4) errors, and have been shown to preserve (anti-)instantons for many thousands of
sweeps.

C. Topological Charge

On the lattice, the total topological charge is obtained by summing the charge density

q(x) =
g2

32π2
ǫµνρσTr{Fµν(x)Fρσ(x)} , (15)

over each lattice site
Q =

∑

x

q(x) , (16)

where µ, ν, ρ, σ sum over the directions of the lattice axes. Further to their construction
of the improved action, de Forcrand et al. have used an analogous procedure to define an
improved lattice topological charge operator [5]. We choose to construct the O(a4)-improved
topological charge in a different manner. In the next section we derive an improved version
of the field-strength tensor, Fµν . This improved operator forms the basis of our definition of
the improved topological charge. The derivation of the improved field-strength tensor will
serve to illustrate the general methods used to deduce the results already stated (without
proof) above for the improved action.

III. THE LATTICE FIELD-STRENGTH TENSOR

Consider the problem of expanding a generic Wilson loop operator. Such an operator is
defined as the path-ordered exponential of the closed path integral around the loop

W (m×n)
µν = P eig

∮

A.dx. (17)
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As noted earlier, the path ordering is crucial to obtaining the full non-abelian field-strength
tensor in the action associated with W (m×n)

µν such that the errors are O(g2a2). Note that

mean-field improvement reduces the magnitude of these O(g2a2) errors present early in the
cooling process. The O(g2a2) errors are also suppressed via cooling and we do not consider
them further.

We are considering tree-level improvement to remove O(a4) and higher errors. It is
therefore sufficient to work to leading non-vanishing order in g, which is equivalent to the
abelian theory. We hence determine the coefficients in the expansion of any Wilson loop by
considering the weak coupling limit g → 0.

Rewriting the abelian version of the line integral
∮

A.dx in Eq. (17) as
∮

(Aµdxµ +Aνdxν)
we see that we can apply the two-dimensional version of Stoke’s theorem (i.e., Green’s
theorem)

∮

∂R
Jdx + Kdy =

∫ ∫

R

(

∂K

∂x
−

∂J

∂y

)

dxdy , (18)

where ∂R is the closed contour containing the two-dimensional surface R. Therefore we see
that we can readily rewrite our integral around the loop as

∮

A.dx =
∫ ma/2

−ma/2
dxµ

∫ na/2

−na/2
dxν (∂µAν(x0 + x) − ∂νAµ(x0 + x)) . (19)

where x0 is the centre of the loop. The integrand is identified as the abelian field-strength
tensor

∮

A.dx =
∫ ma/2

−ma/2
dxµ

∫ na/2

−na/2
dxνFµν(x0 + x) . (20)

Hence the expansion of any abelian loop will be in powers of Fµν , reproducing the FµνF
µν

term of the action at order O(g2), and containing error terms of relative order O(g2a2) and
O(a4).

Now we Taylor expand the Fµν ’s around the point x0

∮

A.dx =
∫ ma/2

−ma/2
dxµ

∫ na/2

−na/2
dxν

(

Fµν(x0) +
∑

α

xα∂αFµν(x0)

+
1

2

∑

α,β

xαxβ∂α∂βFµν(x0) + · · ·



 , (21)

Since our plaquette is a two-dimensional object we sum over the µ and ν directions, (α = µ
or ν, and similarly for β).

∮

A.dx =
∫ ma/2

−ma/2
dxµ

∫ na/2

−na/2
dxν

(

Fµν(x0) + {xµ∂µ + xν∂ν}Fµν(x0)

+ {xµxν∂µ∂ν}Fµν(x0) +
1

2

{

x2
µ∂

2
µ + x2

ν∂
2
ν + x2

µxν∂
2
µ∂ν + xµx

2
ν∂µ∂2

ν

}

Fµν(x0)

+
1

6

{

x3
µ∂

3
µ + x3

ν∂
3
ν + x3

µxν∂
3
µ∂ν + xµx

3
ν∂µ∂

3
ν

}

Fµν(x0)
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+
1

24

{

x4
µ∂

4
µ + x4

ν∂
4
ν

}

Fµν(x0)

+
1

4

{

x2
µx

2
ν∂

2
µ∂2

ν + x2
µx

2
ν∂

2
µ∂2

ν

}

Fµν(x0) +O(x5)
)

. (22)

The terms with odd powers of xµ or xν vanish upon integration, because of the symmetric
integration limits, about the center of the loop. Let us perform the expansion of the standard
(1 × 1) plaquette.

∮

A.dx =
∫ ∫ a/2

−a/2
dxµdxν

(

Fµν(x0) +
1

2

{

x2
µ∂

2
µ + x2

ν∂
2
ν

}

Fµν(x0)

+
1

24

{

x4
µ∂

4
µ + x4

ν∂
4
ν

}

Fµν(x0) +
1

4

{

x2
µx2

ν∂
2
µ∂

2
ν + x2

µx2
ν∂

2
µ∂

2
ν

}

Fµν(x0) + O(x5)
)

,

= a2Fµν(x0) +
a4

24

(

∂2
µ + ∂2

ν

)

Fµν(x0)

+
a6

1920

(

∂4
µ + ∂4

ν

)

Fµν(x0) +
a6

576

(

∂2
µ∂

2
ν

)

Fµν(x0) + O(a8) . (23)

This expansion can be determined to arbitrary order by taking the Taylor expansion in
Eq. (21) to the desired order.

So consider again the form taken by the equation for the expansion of the (1 × 1) loop
operator in the non-abelian case, which derives from the Schwinger line integral around a
closed path

W (1×1)
µν = Peig

∮

A.dx = P

{

1 + ig
∮

A.dx −
g2

2
(
∮

A.dx)2 + · · ·

}

. (24)

The standard approach to constructing the action is to take the real part of the trace of this
expansion, thereby extracting the leading term which is just one, and the third term which
is proportional to F 2

µν . However we are interested here in extracting the term proportional
to Fµν . We can do this by making the following construction, which takes advantage of the
hermitian properties of the Gell-Mann matrices

W (1×1)
µν = P

{

1 + ig
∮

Adx −
g2

2
(
∮

Adx)2 + O(g3)

}

,

W (1×1)†
µν = P

{

1 − ig
∮

Adx −
g2

2
(
∮

Adx)2 + O(g3)

}

,

and hence

−i

2

[

W (1×1)
µν − W (1×1)† −

1

3
Tr(W (1×1)

µν − W (1×1)†
µν )

]

= gP
∮

Adx + O(g3)

= ga2
[

Fµν(x0) + O(a2) + O(g2a2)
]

.

(25)

We have subtracted one-third of the trace to enforce the traceless property of the Gell-Mann
matrices.
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Eq. (25) demonstrates how we construct the field-strength tensor Fµν from the (1×1) pla-
quette. Since the expansion in Eq. (23) corresponds with a given Wilson loop only through
the choice of integration limits, this suggests that it is also possible to construct an improved
field-strength tensor from a suitably chosen linear combination of Wilson loops. This im-
proved field-strength tensor can be fed directly into Eq. (15) resulting in a topological charge
which is automatically free of discretization errors to the same order in a2. Furthermore,
since the Yang-Mills action is based upon the field-strength tensor (squared), it is possible
to create a reconstructed action, SR, by inserting the improved field-strength tensor directly
into the equation

SR = β
∑

x

∑

µ,ν

1

2
TrFµν(x)2 . (26)

Since the reconstructed action is improved differently to the standard improved action
operator, Eq. (13), and constructed from clover terms, the value of the action calculated
with the reconstructed action operator can be compared with the value calculated with the
standard improved action operator at each cooling sweep as a mechanism to explore the
size of the remaining discretization errors.

IV. IMPROVING THE FIELD-STRENGTH

We now wish to construct sums of clover terms designed to remove O(a2) and O(a4)
errors relative to the leading term, a2Fµν . Let us begin by defining

A = ga2Fµν ,

B = ga4
(

∂2
µ + ∂2

ν

)

Fµν ,

C = ga6
(

∂4
µ + ∂4

ν

)

Fµν ,

D = ga6
(

∂2
µ∂

2
ν

)

Fµν . (27)

Let us now denote C(m,n) as the combination of Wilson loop terms extracted from the
left-hand-side of Eq. (25) corresponding with the loops used to construct a clover term as
depicted in Fig. 1. Constructing the four clover terms and symmetrizing in n ↔ m we have

C(m,n) =
1

8

{∫ ma

0
dxµ

∫ na

0
dxνFµν +

∫ 0

−ma
dxµ

∫ na

0
dxνFµν

+
∫ 0

−ma
dxµ

∫ 0

−na
dxνFµν +

∫ ma

0
dxµ

∫ 0

−na
dxνFµν

+
∫ na

0
dxµ

∫ ma

0
dxνFµν +

∫ 0

−na
dxµ

∫ ma

0
dxνFµν

+
∫ 0

−na
dxµ

∫ 0

−ma
dxνFµν +

∫ na

0
dxµ

∫ 0

−ma
dxνFµν

}

,

=
1

8

{∫ ma

−ma
dxµ

∫ na

−na
dxνFµν +

∫ na

−na
dxµ

∫ ma

−ma
dxνFµν

}

. (28)

Expanding the loop operators as in Eq. (22) we find that

C(1,1) = A +
1

6
B +

1

120
C +

1

36
D ,

9



8
1

FIG. 1: The four m × n loops and four n × m loops used to construct the clover term from which

we construct the lattice topological charge operator.

C(2,2) = 4A +
8

3
B +

8

15
C +

16

9
D ,

C(1,2) = 2A +
5

6
B +

17

120
C +

2

9
D ,

C(1,3) = 3A +
5

2
B +

41

40
C +

3

4
D ,

C(3,3) = 9A +
27

2
B +

243

40
C +

81

4
D . (29)

Notice that the O(a6) terms in each Fµν will be “promoted” to O(a8) (and higher) by
taking the product FµνFρσ, while the O(a8) terms will be promoted to O(a10) (and higher).
Consequently, since we wish to eliminate O(a8) errors from the product, we need only
expand out to (and eliminate) order O(a6) corrections in Fµν . We therefore have five
equations and four unknowns.

The improved field-strength may be written

F Imp
µν = k1C

(1,1)
µν + k2C

(2,2)
µν + k3C

(1,2)
µν + k4C

(1,3)
µν + k5C

(3,3)
µν , (30)

where the ki, the “weightings” of each loop, are defined by

k1A
(1,1) + k2A

(2,2) + k3A
(1,2) + k4A

(1,3) + k5A
(3,3) = 1 ,

k1B
(1,1) + k2B

(2,2) + k3B
(1,2) + k4B

(1,3) + k5B
(3,3) = 0 ,

k1C
(1,1) + k2C

(2,2) + k3C
(1,2) + k4C

(1,3) + k5C
(3,3) = 0 ,

k1D
(1,1) + k2D

(2,2) + k3D
(1,2) + k4D

(1,3) + k5D
(3,3) = 0 ,

(31)

such that the weighted coefficient of ga2Fµν is 1 and the weighted coefficients of the O(a2)
and O(a4) terms vanish in the sum of loops. Here A(m,n) represents the coefficient of the
A term from the expansion of C(m,n)

µν and so forth, with the values of the coefficients taken
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from Eqs. (29). To find the values of the improvement constants we use these coefficients to
construct an equivalent matrix equation. Eq. (31) takes the form
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. (32)

Using Gauss-Jordan elimination, the improvement coefficients are

k1 = 19/9 − 55k5 ,

k2 = 1/36 − 16k5 ,

k3 = 64k5 − 32/45 ,

k4 = 1/15 − 6k5 ,

where the coefficient of the 3 × 3 loop (in this case k5) is a tunable free parameter.

We can see that if we set k5 = 1/90, then k3 = k4 = 0, eliminating the contribution from
the C(1,2) and C(1,3) loops and creating a 3-loop O(a4)-improved field-strength tensor. We
may create a 4-loop improved field-strength tensor in three different ways, by setting k5 = 0,
k5 = 19/495, or k5 = 1/576, where the 3×3, 1×1 or 2×2 loops are eliminated respectively.
We focus on a 4-loop improved tensor with k5 = 0 throughout this investigation, analogous
to the 4-loop action of de Forcrand et al.

It must, of course, be noted that the 3-loop and 4-loop action and field-strength operators
are simply special cases of the 5-loop operators, corresponding with particular choices of the
parameters c5 and k5 respectively for the action and field-strength tensor. As noted above,
we have already chosen to investigate a 5-loop action by using de Forcrand et al.’s choice of
c5 = 1/20, halfway between the 3-loop and 4-loop values of c5. In an analogous manner we
select the value k5 = 1/180 (midway between the 3-loop and 4-loop values) for the 5-loop
improved field-strength tensor.

V. COMPARISON OF IMPROVEMENT SCHEMES

The configurations used in this work are constructed using the Cabbibo-Marinari [8]
pseudo-heatbath algorithm with three diagonal SU(2) subgroups looped over twice. We
thermalize for 5000 sweeps with an O(a2)-improved action with tadpole improvement from a
cold start (all links set to the identity) and select configurations every 500 sweeps thereafter.
Cooling proceeds via updates of the three diagonal SU(2) subgroups, looped over twice [3].
Configurations are numbered consecutively in the order that they were saved during the
process of thermalization. Hence configuration 1 was saved after 5000 thermalization sweeps
from a cold start, configuration 2 was saved 500 sweeps after configuration 1, configuration
3 was saved 500 sweeps after configuration 2, and so on. Our results are generated on a
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123 × 24 (untwisted) periodic lattice at β = 4.60, with a lattice spacing of a = 0.125 fm.

As a thermalized configuration is cooled over the course of many hundreds of sweeps,
the action of the configuration monotonically decreases. This occurs because the cooling
algorithm smooths out short-range fluctuations in the field. As these ultraviolet components
of the field are suppressed, the underlying medium and long-distance structure of the field
is revealed. When there are no regions of positive and negative topological charge density
in the process of annihilating, the configuration can be thought of as becoming a dilute
instanton gas. If cooling proceeds for long enough, the only non-trivial parts of the field
which will remain are instantons or anti-instantons.

The total action and topological charge of a configuration satisfy the condition [9]

S ≥ |Q|S0 = |Q|
8π2

g2
. (33)

Since all continuum single (anti-)instantons are non-trivial minima of the local action with
|Q| = 1, they saturate the equality in Eq. (33) and therefore have an associated action of
S0 = 8π2/g2. For well-cooled configurations it follows that we may estimate the number of
instantons on the lattice by dividing the total action by the quantity S0 = 8π2/g2. We shall
see that one of the principal criteria by which we may judge the value of an improvement
scheme is how closely the values of S/S0 and the topological charge approach integer values
as we continue cooling and approach self-duality.

In a sufficiently dilute instanton gas the only contributions to the action and topological
charge of the field will be that due to the (anti-)instantons. Hence if there are nI instantons
and nA anti-instantons well-separated on a large volume, the total action and topological
charge should be integers, and satisfy the conditions S/S0 = nI + nA and Q = nI − nA. As
cooling proceeds, instanton-anti-instanton pairs will annihilate until S/S0 = |Q| at which
point the configuration is self-dual. What we expect to see is that as we begin cooling, Q
should relatively quickly become integer and remain stable thereafter. As we continue to
cool towards self-duality we should then see S/S0 monotonically decreasing to the point
where S/S0 → |Q| from above.

Our lattice volume is not large enough that we observe configurations, stable under
cooling, with both instantons and anti-instantons simultaneously, i.e., on our lattice they
annihilate as cooling proceeds. In Fig. 2 we present the action for two configurations
each having a topological charge (stabilized after preliminary cooling) of |Q| = 1. As
cooling proceeds one observes that S/S0 repeatedly decreases by an increment of two.
During this period the topological charge remains stable. This indicates that the action
is dropping due to instanton-anti-instanton annihilation events. Notice that the plateaus
persist for longer as cooling continues. It is known that there can be no fully self-dual
|Q| = 1 configurations on the torus [10, 11]. The fate of |Q| = 1 configurations under
continued cooling will be discussed elsewhere [12]. We have observed that configurations
which stabilize at larger topological charges do not exhibit such pronounced plateauing.
It is reasonable to deduce that as the lattice becomes more sparsely populated, the mean
period between instanton-anti-instanton annihilation events becomes longer, as it becomes

12



FIG. 2: Action values of configuration 1 (thin line) and configuration 11 (bold line), cooled with

the 3-loop improved action. Both configurations have a total topological charge of 1. It can be

clearly seen that the action of each configuration repeatedly plateaus briefly near integer values

(dashed lines) before dropping by two units. This is characteristic of instanton-anti-instanton

annihilation events. In the case of configuration 11, plateauing begins around sweep 500 (S/S0 ≈ 9).

possible to have well-separated, weakly-interacting instantons and anti-instantons on the
lattice. On a sufficiently large lattice, for sufficiently small total |Q| it should then be
possible to arbitrarily closely approach a true dilute instanton gas with both instantons and
anti-instantons, where the configuration is locally (but not globally) self-dual.

On the lattice, discretization errors are expected to lead to non-integer values of S/S0

and topological charge for a highly-cooled configuration. The better the improvement, the
closer these values will come to integers. Fig. 3 shows how S/S0 and the topological charge
approach the same value, indicating the approach to a self-dual configuration. They remain
stable for several hundred sweeps of improved cooling. We now wish to determine which
cooling scheme (3-loop, 4-loop, or 5-loop) and which field-strength improvement scheme are
best.

Throughout the discussion of our results we shall use the following notation: the cooling
action will be denoted by S, the reconstructed action by SR and our highly-improved topo-
logical charge by Q. In some cases the type of improvement scheme used will be denoted
by a number in parentheses. Hence the 3-loop improved cooling action is written as S(3),
our topological charge calculated from a 4-loop improved field-strength tensor is written as
Q(4), our 5-loop reconstructed action is written as SR(5), and so on.

13



FIG. 3: An example plot of how improved cooling stabilizes the action (circles) and topological

charge (triangles) at consistent values. The action is rescaled by dividing by S0, the action of a

single instanton. Cooling is performed with an S(3) action, and the topological charge is Q(3).

[The notation used is that S(n), SR(n), and Q(n) are the n-loop forms of the improved action,

our reconstructed action, and our improved topological charge operator respectively.]

A. Improved Cooling

We shall commence the assessment of which improved action has the smallest discretiza-
tion errors by demonstrating explicitly the discretization errors in the standard Wilson
(plaquette) action. Fig. 4 shows the action against sweep number for a configuration
cooled with the Wilson action (triangles), denoted as S(1), and the S(2) action (circles)
from Eq. (12). It can be clearly seen that the Wilson action drops to a temporary
plateau, but eventually destabilizes and drops by approximately one unit around sweep
number 250, and again around sweep number 750. It should also be noted that when the
numerical data are examined closely these plateaus are found to occur somewhat below
integer values. However the S(2) cooling scheme plateaus at a value much closer to inte-
ger (in this case 6) and remains at this value without destabilizing after 1000 cooling sweeps.

This result (and other similar results on other configurations) are an indication that
the ordinary Wilson plaquette action significantly underestimates the true action of the
configuration. Because the large discretization errors in the action prevent the cooling
algorithm from updating the links in a manner which accurately reflects the classical
structure of the fields, plaquette cooling destroys important topological structures. It
is true that the action may be expected to drop (while the topological charge remains
constant) due to instanton-anti-instanton annihilation during the cooling process. However,
since the action drops by an increment of one unit (not two) it is clear that we are not
observing a decrease in the action as a result of instanton-anti-instanton annihilation, but
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FIG. 4: Action of configuration 89 cooled with S(1) (triangles) and S(2) (circles) cooling schemes

after 1000 sweeps. [See Fig. (3) caption for notation.]

rather the destabilization and destruction of a single instanton or anti-instanton.

While the S(2) results are promising, it has already been shown analytically that S(2)
does not stabilize instantons on the lattice [7]. Removal of O(a4) errors and long-term
stabilization of instantons requires the consideration of additional loops.

We now shift our attention to comparisons between the various improved actions. Figs. 5
and 6 show the value of the action attained by two different initial hot configurations as
they are cooled with various improved actions. We can see that in both cases the S(2)
action plateaus well below the relevant integer value, due to large O(a4) discretization
errors with negative sign. We furthermore notice that in the case of Fig. 5, the S(4) action
drops below the integer plateau at S/S0 = 6. In fact, while not shown here it continues
falling to a plateau at S/S0 = 5, indicating that it cools away an instanton-like structure
which the other actions do not. When we examine Fig. 6 we see that the discretization
errors in the S(4) action are relatively large and have negative sign. This suggests that
the S(4) action consistently underestimates the action of the configuration to which it is
applied. In the case of Fig. 5 this underestimation was severe enough to completely destroy
an instanton during the cooling process. This in itself is quite a remarkable result, since it
demonstrates that O(a6) discretization errors can be large enough to destabilize instantons
in some cases. We shall henceforth discard S(4) cooling on the basis that it has large O(a6)
discretization errors with negative sign.
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B. Improved Topological Charge and Reconstructed Action

In order to determine which improvement scheme for Fµν produces the most continuum-
like results we will assess which topological charge operator produces results closest to
integer values. The top diagram of Fig. 7 shows the development of the topological charge
of a hot configuration over the course of 2400 cooling sweeps with the S(3) improved
cooling action. The Q(1) topological charge is too far from an integer value to be seen on
the scale we have chosen for this diagram, but we can clearly see that the Q(3) and Q(4)
operators produce significantly better results than the Q(2) operator. At the bottom we
see equivalent results for configuration 89 (used in Fig. 5), over 1200 sweeps. This time we
see that the Q(3) operator gives marginally more integer-like results than those observed
with the Q(4) operator. But again the Q(1) and Q(2) operators are substantially more
inaccurate, as we would expect from the order of improvement used to construct Q(3) and
Q(4). Our Q(5) operator, constructed with a value of k5 midway between the 3-loop and
4-loop values, produces near-perfect results for both parts of Fig. 7, sitting between the
Q(3) and Q(4) values. Further fine tuning of k5 appears unnecessary as Q(5) lies above and
below the integer values in the top and bottom plots of Fig. 7 respectively.

Since the improved field-strength tensor plays no role in affecting the structure of the
field configurations as they cool, we consider an ensemble of configurations that have
already been cooled to self-duality (for several hundred sweeps) and assess their topological
charge (and reconstructed action) with each different improved Fµν . Table I shows these
results for a number of configurations, all S(3) cooled. We can see that in three of the
four cases the 5-loop improved topological charge, Q(5), and reconstructed action, SR(5),
produce results that are both closest to integer values, and in closest agreement to the value
of the cooling action. In the case of configuration 56, SR(3) and Q(3) produce the results
closest to integer values.

A further comparison, between results for S(3) and S(5) cooling, is presented in
Table II. In this case we wish to determine whether the choice of cooling action affects the
dependability of the reconstructed action. We have not chosen to consider the S(4) cooling
as it has already been deemed unreliable. We see that in the later stages of cooling, SR(5)
gives values closer to the cooling action used in each case (whether the cooling action is
3-loop or 5-loop), which suggests that it may be a more accurate probe of the structure of
the fields produced by the cooling algorithm than either the 3-loop or 4-loop reconstructed
action operators. For these reasons it appears that the 5-loop improved field-strength
tensor with k5 = 1/180 is the most dependable of the choices we have examined.

VI. DISCUSSION

We have now considered the relative merits of the various improvement schemes for the
cooling action. We have also considered the relative merits of the various improvement
schemes for the reconstructed action and the topological charge operators (which of course
are indicative of the accuracy of the improved field-strength tensor). It appears that
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FIG. 5: Action values over the first 1000 cooling sweeps of configuration 89 cooled with the S(2)

(crosses), S(3) (triangles), S(4) (vertical line) and S(5) (circle) actions. Note that S(4) drops to a

value near 5.00, while the other actions plateau near 6.00. [See Fig. (3) caption for notation.]

FIG. 6: Action values over the first 2600 cooling sweeps of configuration 32 cooled with (from top

to bottom on the right-hand-side of the figure) S(3) (triangles), S(5) (circles), S(4) (squares), and

S(2) (crosses). [See Fig. (3) caption for notation.]
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FIG. 7: Topological Charge of configuration 27 (top) and configuration 89 (bottom) cooled exclu-

sively with the S(3) cooling scheme, for 2400 sweeps and 1200 sweeps respectively. In descending

order the curves are Q(3), Q(5), Q(4), and Q(2). The Q(5) (circles) operator falls directly between

the Q(3) (triangles) and Q(4) (squares) topological charge operators, at almost perfect integer

values. [See Fig. (3) caption for notation.]
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TABLE I: Reconstructed action (rescaled by S0) and Q values from various configurations with S(3)

cooling. The columns are the configuration number, the sweep number at which the calculation

was performed, the value of the cooling action, the values of SR(2) to SR(5), and the values of

Q(2) to Q(5). [See Fig. (3) caption for notation.]

Config. Sweep S(3) SR(2) SR(3) SR(4) SR(5)

89 1071 5.99992 5.98908 6.00110 5.99777 5.99943

27 1400 2.00013 1.99687 2.00055 1.99965 2.00010

90 1046 1.99999 1.99849 2.00012 1.99978 1.99995

56 2446 1.99996 1.99878 2.00002 1.99979 1.99990

Config. Sweep S(3) Q(2) Q(3) Q(4) Q(5)

89 1071 5.99992 5.98899 6.00109 5.99777 5.99943

27 1400 2.00013 1.99680 2.00050 1.99961 2.00006

90 1046 1.99999 1.99848 2.00011 1.99977 1.99994

56 2446 1.99996 1.99878 2.00002 1.99979 1.99990

the 5-loop improved field-strength is most accurate, while the 3-loop field-strength is
substantially cheaper (in a computational sense) and still produces excellent results.

Assessment of improvement in the cooling action is more difficult. It has been stated
by de Forcrand et al. [5] that S(5) cooling is most dependable and produces the best
stabilization of instantons. We have cooled configurations with a topological charge of
|Q| = 2 and have seen that the instantons rapidly settle on mutually consistent sizes, and
furthermore each instanton changes size by a factor of no more than 1.1 over the course
of several thousand sweeps. This work will be reported in detail elsewhere [12]. However
de Forcrand et al.’s work establishes a precedent which must be recognized, so let us
mention some differences between their work and ours. Firstly, our work is performed on
configurations which contain several instantons or anti-instantons while de Forcrand et al.’s
work is performed on configurations which consist of a single instanton, obtained via S(1)
cooling. Furthermore our work is performed on a 4-toroidal mesh of lattice points, with
untwisted boundary conditions while de Forcrand et al.’s work is performed with twisted
boundary conditions. The twist in the boundary conditions serves to stabilize the single
instanton present, since self-dual |Q| = 1 configurations are not permitted on an untwisted
torus [10, 11, 13].

As demonstrated in Table II, for our (periodic) lattice the S(3) cooling action produces
results as good as S(5). S(3) cooling is significantly faster than S(5), since it requires fewer
link multiplications, and gives no noticeable decrease in long-term instanton stability. In
fact, for large numbers of cooling sweeps S(5) cooling appears to consistently produce lower
values of S/S0 than S(3) cooling, and lower than the required integer value, suggesting the
presence of O(a6) discretization errors which contribute negatively. Over the long term
these errors may destabilize instantons (as was observed with S(4) cooling), suggesting that
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TABLE II: Reconstructed action and cooling action values (all rescaled by S0) from various con-

figurations cooled with S(3) (columns 3 to 5) and S(5) (columns 6 to 8). [See Fig. (3) caption for

notation.] After no more than 170 cooling sweeps, the mean-field improvement factor u0 for con-

figurations 89 and 32 have settled on a value of 0.99992, and remain completely stable thereafter,

while configuration 39 settles on a value of u0 = 0.99996. The resultant weighting of the 3× 3 loop

to the 1 × 1 loop is u8
0 ≈ 0.9995.

Config. Sweep S(3) SR(3) SR(5) S(5) SR(3) SR(5)

89 200 6.03297 6.03417 6.03243 6.05030 6.05190 6.05012

600 6.00010 6.00130 5.99961 5.99957 6.00116 5.99945

1000 5.99992 6.00110 5.99944 5.99956 6.00115 5.99945

39 220 3.12225 3.12234 3.12203 3.16616 3.16629 3.16596

520 3.00024 3.00041 3.00013 3.00051 3.00074 3.00045

920 2.99992 3.00009 2.99980 2.99986 3.00009 2.99980

32 500 6.00061 6.00300 5.99995 6.00000 6.00319 6.00006

1000 6.00051 6.00284 5.99988 5.99984 6.00298 5.99990

1500 6.00047 6.00274 5.99986 5.99983 6.00294 5.99989

S(3) is the safer choice for investigations of long-term instanton stability.

VII. CONCLUSIONS

In summary, to assess the relative merits of the improvement schemes discussed in this
paper, we compare the various cooling actions (rescaled by the single instanton action
S0), with reconstructed actions (rescaled by S0) and topological charges based upon
various forms of the improved field-strength tensor, Fµν . For studies of instantons on
periodic (untwisted) lattices the S(3) action is optimal for cooling, due to the superior
accuracy with which it approaches integer values, its promise of long-term stability, and
cost-effective execution. Five-loop improvement is optimal for the field-strength tensor,
as most integer-like results are obtained from Q(5) for the improved topological charge
operator and SR(5) for the reconstructed action. However the 3-loop operator also produces
excellent results, and is much less computationally demanding than the 5-loop operator.
This recommends the 3-loop field-strength as a reasonable alternative choice to the 5-loop
improved field-strength when computational resources are limited and improved accuracy
at the order of a few parts in 104 is not required.

The improved field-strength tensor has already been used in a number of investigations.
For example, the 3-loop topological charge described in this paper has been used to assess
the Atiyah-Singer index theorem [14] on uncooled and cooled field configurations [15]. The
highly-improved field-strength tensor has also been used in a “fat-link irrelevant clover”
(FLIC) action [16], a modification of the Sheikholeslami-Wohlert improved quark action
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[17], where the links of irrelevant operators are fattened via APE smearing. Detailed
investigations of the long-term behaviour of instantons under O(a4)-improved cooling have
been performed [12], including investigations of the consequences of the Nahm transform
[10, 13, 18] for the stability of |Q| = 1 configurations on the 4-torus.

Areas of future research using the improved field-strength tensor include adaptation to
the study of glueball and hybrid meson spectra where colour-magnetic and electric fields
explicitly provide gluonic excitations in the hadron interpolating fields [19, 20]. Future
investigations should also investigate dislocation thresholds to learn how coarse the lattice
can be made before a substantial reduction in the quality of data occurs.
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