713 research outputs found

    Analysis of in situ stress and fault reactivation potential for a major candidate storage aquifer

    Get PDF
    Within the Moray Firth, the Lower Cretaceous Captain Sandstone has been proposed as a prospective storage reservoir, with storage potential in depleting hydrocarbon fields, and more significantly, within the greater saline aquifer. Previous simulation studies of CO2 injection into the Captain Sandstone aquifer suggest storage capacities in the range 358 to 2495 Mt over a range of sensitivity scenarios. Storage at this scale will introduce the risk of fault reactivation as a consequence of elevated reservoir pressures. The transmissibility of previously stable faults may be enhanced due to reactivation, increasing the risk of CO2 migration from the storage reservoir. By studying both the geometry of faults and the contemporary stress field affecting the basin, it is possible to resolve the shear and normal stresses acting on faults which cut the reservoir formation and extend into the overburden towards the seabed, and to determine which faults (or parts of faults) are most susceptible to becoming reactivated under elevated pressure conditions. In order to do so, detailed knowledge of the pore pressure conditions at depth and the magnitude and orientations of the principal stresses are required, as are the properties of the faults themselves. Such an analysis is presented here at the basin-scale, focusing on the Captain Sandstone of the Inner Moray Firth Basin

    Defining in-situ stress magnitude and the responses of geology to stress anisotropy in heterogeneous lithologies for the United Kingdom

    Get PDF
    Newly calculated in-situ stress magnitude data has improved the UK database of this important data, vital for understanding how rocks may behave under hydraulic fracturing or "fracking." As this process is controversial in the UK, all new data adds to our understanding of the potential risks of this process. The mode of deformation that rocks experience are highly dependent upon their detailed geology. New data from the highly variable UK Coal Measures Group highlights the degree of lithological control on these processes

    Use of borehole imaging to improve understanding of the in-situ stress orientation of Central and Northern England and its implications for unconventional hydrocarbon resources.

    Get PDF
    New interest in the potential for shale gas in the United Kingdom (UK) has led to renewed exploration for hydrocarbons in the Carboniferous age Bowland–Hodder shales under Central and Northern England. Following an incidence of induced seismicity from hydraulic fracturing during 2010 at Preese Hall, Lancashire, the publically available databases quantifying the in-situ stress orientation of the United Kingdom have shown to be inadequate for safe planning and regulation of hydraulic fracturing. This paper therefore reappraises the in-situ stress orientation for central and northern England based wholly on new interpretations of high-resolution borehole imaging for stress indicators including borehole breakouts and drilling-induced tensile fractures. These analyses confirm the expected north northwest – south southeast orientation of maximum horizontal in-situ stress identified from previous studies (e.g. Evans and Brereton, 1990). The dual-caliper data generated by Evans and Brereton (1990) yields a mean SHmax orientation of 149.87° with a circular standard deviation of 66.9°. However the use of borehole imaging without incorporation of results from older dual-caliper logging tools very significantly decreases the associated uncertainty with a mean SHmax orientation of 150.9° with a circular standard deviation of 13.1°. The use of high-resolution borehole imaging is thus shown to produce a more reliable assessment of in-situ stress orientation. The authors therefore recommend that the higher resolution of such imaging tools should therefore be treated as a de-facto standard for assessment of in-situ stress orientation prior to rock testing. Use of borehole imaging should be formally instituted into best practice or future regulations for assessment of in-situ stress orientation prior to any hydraulic fracturing operations in the UK

    Carbon dioxide storage in the Captain Sandstone aquifer: determination of in situ stresses and fault-stability analysis

    Get PDF
    The Lower Cretaceous Captain Sandstone Member of the Inner Moray Firth has significant potential for the injection and storage of anthropogenic CO2 in saline aquifer parts of the formation. Pre-existing faults constitute a potential risk to storage security owing to the elevated pore pressures likely to result from large-scale fluid injection. Determination of the regional in situ stresses permits mapping of the stress tensor affecting these faults. Either normal or strike-slip faulting conditions are suggested to be prevalent, with the maximum horizontal stress orientated 33°–213°. Slip-tendency analysis indicates that some fault segments are close to being critically stressed under strike-slip stress conditions, with small pore-pressure perturbations of approximately 1.5 MPa potentially causing reactivation of those faults. Greater pore-pressure increases of approximately 5 MPa would be required to reactivate optimally orientated faults under normal faulting or transitional normal/strike-slip faulting conditions at average reservoir depths. The results provide a useful indication of the fault geometries most susceptible to reactivation under current stress conditions. To account for uncertainty in principal stress magnitudes, high differential stresses have been assumed, providing conservative fault-stability estimates. Detailed geological models and data pertaining to pore pressure, rock mechanics and stress will be required to more accurately investigate fault stability. Large-scale deployment of CO2 storage as a strategy for reducing greenhouse gas emissions will rely on the integrity of sealing strata overlying the storage reservoirs to ensure that the captured CO2 is permanently isolated from the atmosphere (IPCC 2005; Chadwick et al. 2009a; Holloway 2009). The existence of pre-existing fault systems of varying dimensions is a common feature throughout the subsurface, and the efficacy of seals may potentially be compromised by any enhanced transmissibility associated with fault zones. Within the Moray Firth, the Lower Cretaceous Captain Sandstone Member of the Wick Sandstone Formation has been proposed as a suitable storage reservoir candidate (SCCS 2011; Shell 2011a; Akhurst et al. 2015). Storage potential exists within depleting hydrocarbon fields (Marshall et al. 2016), while significant additional capacity is available in the surrounding saline aquifer volume. Regional top seals include the Cretaceous Rodby, Carrack and Valhall formations. Simulation studies of CO2 injection identified the storage capacity of the Captain Sandstone to be between 358 and 2495 Mt (Jin et al. 2012). As the injection of CO2 is reliant on the displacement of existing pore fluids, large-scale injection results in increased pore-fluid pressure, the effects of which will be felt across large areas in well-connected aquifer systems (Chadwick et al. 2009b; Jin et al. 2012; Noy et al. 2012). It is well documented that some faults are transmissible to fluid flow, while others act as effective capillary seals (Caine et al. 1996; Aydin 2000; Faulkner et al. 2010). Whether cross-fault flow occurs depends on the juxtaposition of lithologies in the footwall and hanging-wall blocks, as well as the composition of the fault zone and any differential pressure across the fault. In addition, reactivation of previously stable faults caused by increasing pressure, and therefore a reduction in the effective stress, could allow faults to become transmissive to buoyant fluids, such as supercritical CO2, due to the opening of flow pathways during failure (Streit & Hillis 2004). It is this aspect of fault stability that forms the focus of this study, with respect to the Captain Sandstone of the Inner Moray Firth, and utilizing an adaptation of the geological model presented by Jin et al. (2012). Analysis of the geomechanical stability of faults offsetting the Captain Sandstone requires the contemporary stress field affecting the basin to be characterized, in order to resolve the shear and normal stresses acting on mapped faults and to determine which faults, or segments of faults, are most susceptible to becoming reactivated if pore-fluid pressures in the basin are increased as a result of CO2 injection. In order to do so, detailed knowledge of the pore-pressure conditions at depth, the magnitude and orientations of the principal stresses, and the properties of the faults is required

    Climate change adaptation through conservation agriculture: evidence from smallholder farmers in Ondo State, Nigeria

    Get PDF
    This study identifies the factors influencing the adoption of CA among smallholder farmers in Ondo State, Nigeria. To determine the factors influencing the adoption of CA among smallholder farmers, Tobit regression model was used. From the regression results, minimum tillage, crop rotation, mulching, cost of planting materials, cost of equipment’s are all positively significant at 1% and a unit increase in them will increase the adoption of CA practices in the study area. The primary occupation of the respondents is positively significant at 5% and a unit increase in primary occupation of the respondentsincreases the rate of adopting CA practices by 0.0570868. Age of the respondents is negatively significant at 10% and this implies that a unit increase in age decreases the rate of adopting CA by 0.0018808. Also, household size is positively significant at 10% and a unit increase in households’ size increase the level of adoption of conservation agriculture by 0.0079891. This paper therefore recommends that policies addressing the 3 core principles of CA practices (minimum tillage, crop rotation and mulching) should be re-emphasized so as to improve the food production involve in agricultural value chain activities. Young ones should be encouraged to involve in farming practices especially CA activities. And lastly, cost of equipment and planting materials should be subsidized for farmers so as to foster improved farming, increased food production and hence aid commercialization among smallholder farmers.Keywords: Conservation agriculture, agricultural value chain and smallholder farmer

    Assessing carbon dioxide storage integrity of an extensive saline aquifer formation: East Irish Sea Basin, UK

    Get PDF
    Accurately determining the contemporary pore pressure and in situ stress conditions is critical to the safe planning and development of subsurface operations such as CO2 storage. According to the UK storage capacity atlas, CO2STORED (Bentham et al. 2014), the East Irish Sea Basin (EISB) has a significant storage capacity of nearly 4 Gt (P50) within saline aquifer parts of the Triassic-aged Ormskirk Sandstone Formation (OSF). The OSF is present over a significant part of the EISB, and where buried deeply enough to be considered for CO2 storage is overlain by the Mercia Mudstone Group (MMG), a thick sequence comprising up to 3200 m of interbedded mudstones, siltstones and evaporites. As a result of Tertiary inversion, the Jurassic and younger succession is absent over most of the basin, and so the MMG represents the vast majority of the overburden succession. The presence of numerous gas accumulations, including the Morecambe South Gas Field with its ~400 m gas column, is testament to the sealing capacity of the MMG. Where halite formations within the MMG directly overly the OSF, the sealing capacity of the MMG is significantly increased

    CO2 Storage Potential of the Eocene Tay Sandstone, Central North Sea

    Get PDF
    Carbon Capture and Storage (CCS) is crucial for low-carbon industry, climate mitigation and a sustainable energy future. The offshore capacity of the UK is substantial and has been estimated at 78 Gt of CO2 in saline aquifers and hydrocarbon fields. The early-mid Eocene Tay Sandstone Member of the Central North Sea (CNS) is a submarine-fan system and potential storage reservoir with a theoretical capacity of 123 Mt of CO2. The Tay Sandstone comprises of 4 sequences, amalgamating into a fan complex 125km long and 40 km at a minimum of 1500 m depth striking NW-SE, hosting several hydrocarbon fields including Gannett A, B, D and Pict. In order to better understand the storage potential and characteristics, the Tay Sandstone over Quadrant 21 has been interpreted using log correlation and 3D seismic. Understanding the internal and external geometry of the sandstone as well as the lateral extent of the unit is essential when considering CO2 vertical and horizontal fluid flow pathways and storage security. 3D seismic mapping of a clear mounded feature has revealed the youngest sequence of the Tay complex; a homogenous sand-rich channel 12 km long, 1.5 km wide and on average 100 m thick. The sandstone has porosity >35%, permeability >5 D and a net to gross of 0.8, giving a total pore volume of "927×" 〖"10" 〗^"6" m3. The remaining three sequences are a series of stacked channels and interbedded mudstones which are more quiescent on the seismic, however, well logs indicate each subsequent sequence reduce in net to gross with age as mud has a greater influence in the early fan system. Nevertheless, the sandstone properties remain relatively consistent and are far more laterally extensive than the youngest sequence. The Tay Sandstone spatially overlaps several other potential storage sites including the older Tertiary sandstones of the Cromarty, Forties and Mey Members and deeper Jurassic reservoirs. This favours the Tay Sandstone to be considered in a secondary or multiple stacked storage scenario. Principal risks include injection-induced pressure-increase limiting injectivity, caused by limited connectivity between sand-rich sequences, up-dip migration to sandstone shelf-facies of the overlying Mousa Formation, or to hydraulically-connected underlying Tertiary sandstones such as the Forties Member which may in places be in hydraulic communication

    Pressure control for managing and optimizing adjacent subsurface operations in large scale CCS

    Get PDF
    Injecting CO2 in to the subsurface for safe storage of CO2 the pressure propagates far away from the injection point and this can be a potential problem if the overpressure extents to neighbouring subsurface activities or potential leakage pathways. For structural closure trap configurations the CO2 plume is captured within the local structural closure but the pressure footprint is on a more regional scale. This rise the question on, how large the storage complex needs to be for any individual storage operations and how large an area monitoring activities have to cover. The EC CCS guidance document addresses the issues with statements on competitions between subsurface operations but returns no absolute values. Pressure modelling of CO2 injection process with state of the art reservoir simulation tools is challenges by use of realistic model boundary conditions in order to model a realistic pressure level. Combined use of models on a site scale and on a regional scale can instruct how boundary conditions are set-up for a site scale model. Pressure management through pressure release wells could be an option to mitigate undesirable over-pressure developments. For local structural closures the pressure release wells can be placed outside the closure hereby mitigate the overpressure without introducing a potential leakage by drilling inside the trap. The paper addresses the issue of selecting model boundary conditions and modelling mitigation of pressure development by use of a large regional model with local structural traps in the Bunter Sandstone Formation in the UK Southern North Sea

    A mixed-method study of pain management practice in a UK children’s hospital: Identification of barriers and developing strategies to maintain effective in-patient paediatric pain management

    Get PDF
    © 2015 The Authors. Aim To assess Acute Pain Service and paediatric pain management efficacy in a UK specialist paediatric hospital to inform wider recommendations for future sustainability. Background UK paediatric acute pain services vary. Although comprehensive pain management guidelines exist, consensus on the best model of care is lacking. Worldwide, medical and pharmacological advances and rapid patient turnover have increased the challenges of managing hospitalized children’s pain. Simultaneously nurses, who deliver the bulk of pain management, have experienced reduction in skill mix and training opportunities. Specialist Acute Pain Services have evolved to meet these demands; their overall efficacy is unknown. Design This mixed-methods study explores pain management practice at a UK paediatric hospital to assess current efficacy and future sustainability. Method A 2013 case note review of all Acute Pain Services referrals over 14 days were compared with an interval sample of concurrent non-referred inpatient children; seven semi-structured interviews were conducted with a range of clinical staff. Results Twenty-two referrals of 15 children were made; 15 comparison children were identified. All 30 children (100%) were appropriately referred/non-referred. Acute Pain Services cases experienced higher pain levels, were more likely to have long term conditions, longer hospital stay and repeat admissions. Three key themes emerged through interview analysis: ‘addressing pain’, ‘changing contexts’ ‘pain as an “expert” skill’. Increased specialization, reduced clarity between different pain modalities and decreased training opportunities had resulted in potentially unsustainable APS dependence

    Project Reach: Implementation of Evidence-Based Psychotherapy Within Integrated Healthcare for Hurricane Harvey Affected Individuals

    Get PDF
    Project Reach was established to deliver evidence-based mental healthcare services to children and adults affected by Hurricane Harvey and its aftermath. Through Project Reach, an innovative multi-component assessment and treatment service is utilized to identify and treat in integrated healthcare settings both children and adults exhibiting significant behavioral health concerns in Houston. The aim is to provide sustainable, integrated mental health services through primary care and school-based settings to post-Harvey affected individuals whose emotional needs remain unmet. This paper describes the design and implementation of Project Reach as well as special considerations for implementation. The overall goal of Project Reach is to form a platform for expanding integrated services for those affected by Harvey that will maximize behavioral health outcomes while reducing cost and improving access
    • 

    corecore