5 research outputs found

    Athletes Who Train on Unstable Compared to Stable Surfaces Exhibit Unique Postural Control Strategies in Response to Balance Perturbations

    Get PDF
    Background Athletes have been shown to exhibit better balance compared to non-athletes (NON). However, few studies have investigated how the surface on which athletes train affects the strategies adopted to maintain balance. Two distinct athlete groups who experience different types of sport-specific balance training are stable surface athletes (SSA) such as basketball players and those who train on unstable surfaces (USA) such as surfers. The purpose of this study was to investigate the effects of training surface on dynamic balance in athletes compared to NON. Methods Eight NON, eight SSA, and eight USA performed five 20-s trials in each of five experimental conditions including a static condition and four dynamic conditions in which the support surface translated in the anteroposterior (AP) or mediolateral (ML) planes using positive or negative feedback paradigms. Approximate entropy (ApEn) and root mean square distance (RMS) of the center of pressure (CoP) were calculated for the AP and ML directions. Four 3 × 5 (group × condition) repeated measures ANOVAs were used to determine significant effects of group and condition on variables of interest. Results USA exhibited smaller ApEn values than SSA in the AP signals while no significant differences were observed in the ML CoP signals. Generally, the negative feedback conditions were associated with significantly greater RMS values than the positive feedback conditions. Conclusion USA exhibit unique postural strategies compared to SSA. These unique strategies seemingly exhibit a direction-specific attribute and may be associated with divergent motor control strategies

    Para além do pensamento abissal: das linhas globais a uma ecologia de saberes

    Full text link

    Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility

    Get PDF
    ABSTRACTBackground:Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females.Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners.Method: Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (&#945;=0.05).Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4Âș) exhibited more hip flexion than inflexible females (27.9±4.6Âș, p<0.01) and flexible males (30.1±9.5Âș, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment.Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners
    corecore