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Original article
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Abstract

Background: Athletes have been shown to exhibit better balance compared to non-athletes (NON). However, few studies have investigated how
the surface on which athletes train affects the strategies adopted to maintain balance. Two distinct athlete groups who experience different types
of sport-specific balance training are stable surface athletes (SSA) such as basketball players and those who train on unstable surfaces (USA) such
as surfers. The purpose of this study was to investigate the effects of training surface on dynamic balance in athletes compared to NON.
Methods: Eight NON, eight SSA, and eight USA performed five 20-s trials in each of five experimental conditions including a static condition
and four dynamic conditions in which the support surface translated in the anteroposterior (AP) or mediolateral (ML) planes using positive or
negative feedback paradigms. Approximate entropy (ApEn) and root mean square distance (RMS) of the center of pressure (CoP) were calculated
for the AP and ML directions. Four 3 × 5 (group × condition) repeated measures ANOVAs were used to determine significant effects of group and
condition on variables of interest.
Results: USA exhibited smaller ApEn values than SSA in the AP signals while no significant differences were observed in the ML CoP signals.
Generally, the negative feedback conditions were associated with significantly greater RMS values than the positive feedback conditions.
Conclusion: USA exhibit unique postural strategies compared to SSA. These unique strategies seemingly exhibit a direction-specific attribute and
may be associated with divergent motor control strategies.
© 2016 Production and hosting by Elsevier B.V. on behalf of Shanghai University of Sport.
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1. Introduction

Postural sway is the continuous movement of one’s center
of mass (COM) about the base of support in order to maintain
an upright stance.1 In an erect posture, humans are in a con-
tinuous state of adjustment and must counter the effects of
gravity through alterations in tonic muscular control.2 The central
nervous system utilizes information from the sensory (visual,
vestibular, and somatosensory) and motor systems to make
adjustments in muscle activation to control upright stance through
an efficient pairing of feedback and feedforward mechanisms.1,3,4

From a motor control perspective, postural sway can be viewed
as a measure of the effectiveness of sensorimotor integration
in response to changing COM locations relative to the base of
support.5

It has been suggested that optimal postural control is asso-
ciated with minimal magnitudes of postural sway about a
central point of equilibrium.6 Thus, greater magnitudes of sway
are interpreted as an inability to produce optimal control of
posture and may be associated with an unhealthy state or
general decline in sensorimotor performance such as with
advancing age.7,8 It is theorized that a more refined or healthy
postural control system will exhibit smaller postural sway mag-
nitudes during a given task compared to a less refined or patho-
logical system. These postulations are supported by existing
literature that has demonstrated that elite athletes exhibit
smaller sway magnitudes when compared to either non-elite
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athletes or non-athletes (NON).9 In addition, healthy young
adults demonstrate less sway magnitude when compared to
older adults (65+ years) during eyes open, quiet stance, and a
dynamic obstacle avoidance condition. These data suggest that
the total sway magnitude is indicative of the status of the pos-
tural control system within a given individual. However, this
suggestion is based upon the assumption that the magnitude of
sway is indicative of precision within the system during a bilat-
eral standing task.

During athletic participation, motor performance is goal-
oriented and dependent upon the mechanical demands of the
sport, training status, and training paradigm. Multiple studies
have demonstrated that certain athletes (volleyball players, canoers,
kayakers, and ice skaters) all demonstrate greater sway magni-
tude in eyes open conditions when compared to healthy NON.10–12

During eyes closed and unstable platform conditions (foam
board) these same athletes were not significantly different from
healthy NON. As such, greater sway magnitude is not always
an indicator of the health of the postural control system or
reduced balance. This could be explained by the dynamical
systems theory where biological systems self-organize in order
to adapt to the environment, biomechanical and morphological
constraints of the tasks.5 All of these athletes participate and
train in visually stimulating rapidly changing environmental
conditions that involve moving suddenly from a static position
(i.e., ready stance prior to a volleyball serve; calm slow water
paddling transitioning to rough rapids or a sprint; smooth single
plane motion skating to a jump, spin or turn). As a result, this
greater sway magnitude could be a trained motor strategy that
enables these athletes to fluidly switch from static positions to
more unstable positions. These results could point to training
adaptations, such as a unique training paradigm(s) that are
adopted within the postural control system for certain athletes
for specific motor performance training goals. Thus, caution is
suggested when interpreting greater sway magnitude results in
certain athletic populations.

Training status (trained vs. untrained) significantly affects
postural stability across the lifespan.9 In fact, most studies have
focused solely on athletes who train and compete on a stable
surface such as a floor or a ground. However, not all athletes
compete on these stable surfaces. With the popularization of
extreme sports such as surfing and snowboarding, an increasing
number of athletes who participate in sports compete on
unstable surfaces. Emerging evidence10 has suggested that these
athletes may adopt unique neuromuscular and biomechanical
strategies to maintain upright stance (static stance). These
unique postural control strategies are proposed to be a function
of the characteristics of the support surface on which stable
surface athletes (SSA) are compared to unstable surface ath-
letes (USA) who train. We suggest that SSA apply force to their
support surface, and in response their COM is translated in the
opposing direction to that of force application. Conversely,
USA apply force to their support surface, and in response the
support surface moves in the direction of force application. The
strategy adopted by USA during athletic performance (surfing
or snowboarding) has been suggested to be dominated by a
feedforward control strategy which manifests in a proximal to

distal control strategy in response to balance perturbations. This
is in contrast to the SSA which may initiate movement at the
level of the foot and ankle.10 Continued examination of these
unique control strategies in dynamic environments will further
elucidate these proposed mechanisms.

While few research studies have focused on the effects of
training paradigm on postural control strategies in these func-
tionally different groups, most studies pertaining to postural
stability have utilized traditional measures of postural stability
such as sway magnitudes or sway excursions. In contrast to
traditional measures of postural stability, non-linear measures
provide a quantitative assessment of the moment-to-moment
variability within a time-series. An emerging body of literature
has suggested that non-linear measures of postural stability
may offer unique insight into the stability of the neuromuscu-
lar system and the efficacy of the postural control strategy.1–3,5–9

Specifically, it has been shown that non-linear measures of
variability such as approximate entropy (ApEn) are capable of
detecting subtle differences in the characteristics of the center
of pressure (CoP) profile even in the absence of significant
differences in traditional measures of sway including CoP
excursions, resultant distance or path length, and sway
accelerations.5,9,13,14 Measurement of both the quantity and quality
of postural sway is likely to offer a more complete description
of the health and performance of the underlying sensorimotor
system.

At present, few research studies have focused on the effects
of training paradigm on postural control strategies in these two
functionally different groups. However, the unique training and
postural control strategies may provide a platform from which
evidence-based therapeutic interventions may be developed to
improve balance in a variety of populations. Therefore the
purpose of this study was to investigate the effect of different
feedback training paradigms on traditional and non-linear mea-
sures of postural stability when balance is perturbed by a trans-
lating force platform. Supported by existing literature, it is
hypothesized that USA will exhibit significantly greater mea-
sures of variability compared to SSA.

2. Methods

2.1. Subjects

Twenty-four healthy adults aged 18–30 years were recruited
to participate in the current study. Participants were recruited
based on the balance paradigm in which each athletic partici-
pant participated including: NON (age: 22.9 ± 2.5 years), SSA
(age: 22.6 ± 3.2 years), and USA (age: 23.1 ± 2.5 years). NON
participants were characterized as being sedentary or partici-
pating less than 30 min of recreational physical activity fewer
than 3 days per week.15 SSA participants were recreationally
active in a traditional sport at least 30 min per day for 3 or more
days per week on a stable surface. The subjects were primarily
composed of graduate students who participated in intramural
sports 4–5 days per week. Each of these games or practices
lasted no less than 1 h. While no measures of physical fitness
were measured, all participants were familiar with and capable
of their sports. A stable surface was characterized by a surface
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on which the athlete’s COM moved in direct response to the
force applied to the support surface without translation of
the support surface such as a basketball floor or playing field.
The USA group was composed of individuals who regularly
participated in sports in which the base of support moved in
response to the forces applied to the surface such as a surfboard
or snowboard. Participants were excluded if they had any
history of orthopedic injury or neurological disorder that pre-
vented them from maintaining a stable posture or from success-
fully participating in their selected sport at the time of testing.
The experimental protocol was approved by the Institutional
Review Board and all participants provided written informed
consent prior to participation in this study.

2.2. Instrumentation

Consistent with previous research investigating these
populations,7 ground reaction forces (GRFs) were recorded
from two 0.23 m (width) × 0.45 m (length) force platforms
placed side by side and embedded within a 1.8 m × 1.8 m raised
platform (200 Hz; Natus Medical, Inc., Clackamas, OR, USA).
This resulted in a stance width of approximately 0.23 m during
testing. CoP was calculated from the GRFs recorded from the
two adjacent force platforms.

2.3. Procedure

As described previously,7 subjects were asked to perform a
quiet standing task with each foot placed at the center of each
force platform, with the participant’s feet aligned with the
anteroposterior (AP) axis of each force platform and the arms
placed by the participant’s side in a relaxed position. Foot
placement was standardized by marking the initial foot position
prior to the first trial and was maintained throughout the entirety
of testing. Participants were asked to fix their gaze on a target
located 1.67 m away from the participant in the AP direction at
a vertical height approximately equal to the participant’s head.
Participants completed five successful 20-s trials in each of five
experimental conditions with 30 s of rest between individual
trials.

The experimental conditions included a static condition
(STATIC) and four dynamic conditions in which the force
platform upon which participants were standing translated in
the AP or mediolateral (ML) directions in a positive- or negative-
feedback paradigm. A successful trial in the STATIC condition
was characterized by the participant completing a 20-s quiet
standing trial on the support surface while the surface re-
mained stable and did not move. In the positive-feedback
condition, the force platform translated in response to the chang-
ing position of the CoP beneath the participant using a positive-
feedback paradigm in the AP (APpos) or ML directions (MLpos).
For example, as the participant’s CoP position moved in the
positive AP direction (toward the participant’s toes), the force
platform translated in the positive AP direction (toward the
participant’s toes). Conversely, in the negative-feedback condition
if the participant’s CoP moved in the positive AP direction
(toward the participant’s toes), the force platform translated in
the negative AP direction (toward the participant’s heels).

Participants were tested in the negative-feedback paradigm in
both the AP (APneg) and ML directions (MLneg). The experimen-
tal protocol included positive- and negative-feedback conditions
in both the AP and ML directions.

CoP-dependent platform translation occurred immediately
upon the initiation of each experimental trial and followed a
period of quiet stance (rest) on the force platforms. The begin-
ning of each experimental trial was initiated by the investigator.
Platform translation in the AP and ML directions could reach a
maximum magnitude of 0.13 m and a maximum translation
velocity of 1.81 m/s.

2.4. Data analysis

Raw AP and ML CoP time-series were filtered using a
fourth-order, zero phase Butterworth low-pass digital filter with
a 50-Hz cut-off frequency. While many entropic measures have
been used to quantify the regularity and complexity of biologi-
cal signals, due to the abundance of existing data pertaining to
postural stability using ApEn, it was selected to quantify the
regularity of the CoP time-series in this study. ApEn calcula-
tions yield a value between 0 and 2 which reflects the predict-
ability of future values within a time-series based on the
preceding values of that time-series. A value that approaches 0
is indicative of a highly regular, highly predictable signal such
as a sinusoidal wave form. Conversely, high ApEn values
(approaching 2) are representative of irregular wave forms in
which each future value within a time-series is independent of
and cannot be predicted by the preceding values within that
time-series. An example of a signal that would result in a high
ApEn value is white noise as each point in the time-series is an
independent observation and no deterministic pattern exists
within the white noise signal. The ApEn values for the ML and
AP CoP time-series were calculated using the algorithm
denoted in Eq. (1):

ApEn m r N
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where m was the length of the compared runs (m = 2), r was
the similarity criterion between points in a time-series
(r = 0.2 × SD), N was the number of measurements in the time-
series (i.e., number of points). As oversampling has been dem-
onstrated to alter ApEn values,16 a lag of 20 was applied to the
time-series. A lag function was used to down sample the time-
series and functionally reduced the sampling frequency to
10 Hz.13 The ApEn values were calculated for the AP and ML
CoP time-series for each trial for each subject. A subject mean
was then calculated as the average ApEn of all trials within a
given condition for a given subject. Subject means were used in
statistical analysis of the data.

Traditional measures of postural stability were calculated as
previously described.17 Specifically, the root mean squared
(RMS) distances of the AP and ML CoP time-series (RMSAP

and RMSML) from the mean CoP location were calculated
average distances from the mean CoP location. The algorithm
used to calculate the RMS distance in RMSAP is shown in
Eq. (2).
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The standard deviation of the RMS signal (RMSD) was also
calculated as a traditional measure of variability.

2.5. Statistical analysis

A 3 × 5 (group × condition) repeated measures analysis of
variance (ANOVA) was used to determine the presence of sig-
nificant main effects of group (NON vs. SSA vs. USA) and
experimental condition (STATIC vs. APneg vs. APpos vs. MLneg

vs. MLpos) for dependent variables including ApEn, RMSAP,
RMSML, RMSDAP, and RMSDML. In the presence of a signifi-
cant main effect or significant interactions, pairwise compari-
sons were made using a Tukey’s post hoc analysis to determine
the source of the significant finding. Alpha level was set at
p < 0.05. All statistical analyses were conducted using SPSS
Version 21.0 (IBM, Armonk, NY, USA).

3. Results

3.1. AP ApEn

The statistical analysis of ApEn values of the AP CoP signals
revealed a significant main effect of group (F = 5.920; p < 0.009)
and condition (F = 41.178; p < 0.001) (Fig. 1A). Pairwise com-
parisons of group demonstrated that with conditions collapsed
the USA group had significantly smaller ApEn values in the
AP CoP signal compared to SSA group (p = 0.008). With con-
ditions collapsed, the AP CoP ApEn values for the NON group
were not significantly different when compared to the SSA
(p = 0.125) or USA groups (p = 0.747), respectively.

Pairwise comparisons of condition revealed that the STATIC
condition had significantly smaller ApEn values than the APpos,
APneg, MLpos, and MLneg conditions (p < 0.001). APpos, MLpos,
and MLneg conditions had significantly smaller ApEn values
compared to the APneg condition (p < 0.001).

No significant group × condition interaction was observed
for AP CoP ApEn values (F = 0.907; p = 0.521).

3.2. ML ApEn

For the ApEn of ML CoP signals, the statistical analysis
revealed a significant group × condition interaction (F = 2.203;
p = 0.048). The pairwise comparisons for group demonstrated
that the ApEn values at MLneg condition were significantly
larger than those at APpos, APneg, and MLpos conditions (p < 0.05).
The STATIC condition had smaller ApEn values than APpos,
APneg, MLpos, and MLneg conditions (p < 0.050). There were no
significant differences between APpos condition and APneg

(p = 0.967) or MLpos conditions (p = 1.000) (Fig. 1B).

3.3. AP RMS distance

Statistical analysis of the RMSAP revealed a significant main
effect of condition (F = 42.899, p < 0.001) while no significant
main effect of group (F = 0.969; p = 0.396) or group × condi-
tion interaction (F = 1.051; p = 0.417) was observed (Fig. 2A).
The post hoc pairwise comparisons of conditions revealed that
the APneg condition had greater RMSAP values than all the other

conditions (p < 0.001). The RMSAP values at STATIC condition
were significantly smaller than the other conditions (p < 0.05).
The MLneg condition had significant greater RMSAP values than
the MLpos condition (p = 0.005).

3.4. ML RMS distance

Statistical analysis of the RMSML condition revealed signifi-
cant main effects of group (F = 4.595; p = 0.022) and condition
(F = 13.883; p < 0.001). No significant group × condition inter-
action was observed for the RMSML values (F = 1.457; p = 0.206)
(Fig. 2B). Post hoc pairwise comparisons revealed that the
USA group had significantly greater RMSML values compared
to the SSA group (p = 0.027) in the APneg condition while no
significant differences were observed between the NON group
and either the SSA (p = 1.000) or USA groups (p = 0.102).
RMSML values at MLneg condition were significantly greater
than all the other conditions (p < 0.001). The STATIC condi-
tion had significantly greater RMSML values than APpos and

Fig. 1. Mean approximate entropy (ApEn) values in the anteroposterior (AP)
(A) and mediolateral (ML) (B) directions for the non-athletes (NON), stable
surface athletes (SSA), and unstable surface athletes (USA) in each of the five
experimental conditions (mean ± SD). *Significant condition effect;
†Significant group effect; ‡Significant group × condition interactions;
aSignificant difference compared to APpos condition; bSignificant difference
compared to APneg condition; cSignificant difference compared to MLpos

condition; dSignificant difference compared to MLneg condition.
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MLpos conditions (p < 0.01). RMSML values at APpos condition
are significantly smaller than those at APneg condition (p < 0.001).

4. Discussion

The purpose of this study was to investigate if athletes who
train with different feedback paradigms demonstrate differ-
ences in postural stability measures (traditional and non-
linear) when balance is perturbed by a translating support surface.
The results of the current study demonstrated that athletes who
trained regularly on surfaces with variable responsiveness (water,
ice, wheels) demonstrated different postural stability from other
athletes and that these responses differ depending on the plane
of movement. Specifically, USA demonstrated more regular
CoP patterns in the AP direction across all conditions. The
USA demonstrated greater magnitudes of CoP RMSML values
in the ML direction than SSA or NON especially when exposed
to a negative-feedback environment, which was more familiar

to these athletes. While no main effect existed for RMSAP,
USA demonstrated greater values across all dynamic condi-
tions when compared to SSA. Overall, the static condition was
associated with the most regular CoP patterns while negative-
feedback environments resulted in the greatest magnitudes of
CoP RMS values in the direction of applied perturbations.

Skilled athletes have been shown to have better balance
when compared to untrained individuals during balance
activities.9 Moreover, level of training within athletes influences
postural stability where elite athletes demonstrate better
balance than either non-elite athletes or NON during dynamic
balance tasks.8,10,18 Beyond skill level, specific sports likely
require different balance requirements. For example, postural
stability in ballet dancers and judoists (two sports requiring
stability and movement in single-leg stance) has been compared
to untrained individuals. It was reported that ballet dancers and
judoists exhibited greater postural control during bipedal stand-
ing, suggesting their specialized training may have some car-
ryover to static balance.19 In the current study, there exist
differences between athletes in regularity in the AP direction
during the static condition without changes in the magnitude.
Because USA are required to maintain their balance in bipedal
stance, the controlled movement of the CoP appears to be more
important than the magnitude of movement.

Details regarding the underlying mechanisms of improved
balance performance have been noted in ballet dancers. It has
been demonstrated that the skilled balance produced by these
athletes is likely due to an increased reliance and acuity upon
somatosensory and vestibular cues and less sensory weighting
of visual feedback compared to untrained individuals.20 The
current study did not evaluate the effect of vision on these
athletes’ ability to control balance. While differences were real-
ized with surface feedback manipulation and vision held con-
stant, reliance on vision cannot be evaluated in the current
study. SSA and USA are required to react to their external
environment during sport. For example, a running back in foot-
ball must stop and cut to avoid a defensive tackle while a surfer
must turn quickly at the bottom of a wave to avoid the crashing
wave. However, the reliance on vestibular and somatosensory
feedback may need to be enhanced in the surfer as his COM
moves one direction while his feet slide the opposite direction.
This is evidenced in the current study by the increase in move-
ment with an improved regularity in USA compared to SSA
when exposed to negative-feedback in the AP direction. While
this is not true in the ML direction, this is likely due to the shift
in planes present. USA such as those used in the current study
require a sideway stance when they compete. This results in
fore–aft movement of the board occurring as a result of ML
planar control in the body, side-to-side movement of the board
occurring as a result of AP planar movement of the body.
Therefore, AP body movement becomes a more important con-
troller of board manipulations such as turning.

Many studies have demonstrated that athletic skill is a strong
predictor of improved balance. However, these studies have
focused exclusively on athletes who train on stable surfaces and
traditional measures of the quantity of motion experienced by
the athlete. Previous research has shown that athletes have

Fig. 2. Mean root mean square (RMS) distance values in the (A)
anteroposterior (AP) and (B) mediolateral (ML) directions for the non-athletes
(NON), stable surface athletes (SSA), and unstable surface athletes (USA) in
each of the five experimental conditions (mean ± SD). *Significant condition
effect; †Significant group effect; #Significant difference between SSA and USA
groups; aSignificant difference compared to APneg condition; bSignificant
difference compared to APpos condition; cSignificant difference compared to
MLneg condition; dSignificant difference compared to MLpos condition.
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smaller magnitudes of postural sway when compared to NON.21

However, in the current study, the USA demonstrated greater
RMSML compared to NON and SSA, particularly when pre-
sented with negative-feedback in the ML direction. It is postu-
lated that these increased RMS magnitudes are the result of
larger sway envelopes in the USA developed through training
with their COM outside of their base of support. A potential
contributing factor to this phenomenon pertains to the posture
adopted during participation in their sport of interest. Specifi-
cally, most USA are required to stand with their bodies facing
the mediolateral axis of the support surface and direction of
travel while their heads are oriented in the direction of travel
and perpendicular to the body’s anteroposterior axis. In order to
steer their support surface (board) to the left or right, USA must
lean beyond the dimensions of the support surface while main-
taining an upright posture through a controlled movement.
These two mechanisms may underlie the greater regularity
exhibited by USA in the AP direction.

Due to previous research findings,3,4,7 it is generally ac-
cepted that athletes exhibit better balance than NON. However,
most studies investigating postural stability in these two groups
have focused on variables of time,20,22–25 sway magnitude,26–28

and reach distance.18,29 While these quantitative measures provide
valuable information pertaining to the mechanical outcome of
the motor program, they do little to describe the stability of the
motor program. In an attempt to better describe the quality of
movement during tasks, other methods including frequency
analysis have been employed to investigate reflex control of
postural sway (short vs. long loop reflex) and to compare between
subject groups.30 Additionally, differences in sway frequency
are present across the lifespan during a quiet standing task,
primarily in the low frequency bands (0.02–2 Hz). Differences
also exist in dynamic balance control between athletes and
NON where athletes perform significantly better in a low fre-
quency band (0–2 Hz), indicating a reduced reliance upon
vestibular and visual afferents during balance activities.25 Ad-
ditionally, dancers are less dependent on visual input when
compared to NON especially in an eyes open condition.20 Finally,
elite rhythmic gymnasts exhibit superior postural control strat-
egies (frequency) evidenced by performance in mediolateral
displacements.26 While frequency of sway was not evaluated in
the present study, ApEn was a measure of movement strategy
and was able to discriminate between athletes in the AP direc-
tion. USA utilized a feedforward strategy evidenced by reduced
ApEn in both APneg and STATIC conditions. The SSA had
larger values of ApEn in these conditions as a result of a more
reactionary movement pattern, especially in the unfamiliar nega-
tive feedback environments.

Few studies have investigated the regularity of sway and
fewer still have applied non-linear analyses to these unique
athlete groups. In the present study, the USA demonstrated
significantly greater regularity in the AP direction suggesting a
need for a controlled sway pattern, particularly when there is an
increased magnitude of movement. It is interesting that this
postural control strategy is carried over to the basic task of
static balance. However, this speaks to the presence of an under-
lying motor control strategy as opposed to a task-dependent

mechanical outcome. Although the USA exhibited greater sway
magnitudes, it can be argued that they exhibit an effective
balance strategy which enhances their ability to maintain
upright stance on an unstable surface. Thus, training in a more
challenging environment may have implications for improved
balance in athletes or may potentially be used as a training
program for older adults at increased risk of falls.31

Static balance is defined as the ability to maintain the body’s
center of gravity over the body’s base of support.18 As an
essential element of motor control, balance plays a key role in
complex tasks such as sport-related and dual task activities.
Balance is achieved through central processing of somatosen-
sory, visual and vestibular afferent inputs resulting in appropri-
ate neuromuscular efferent responses.18 Dynamic balance is
characterized by maintaining the body’s center of gravity over
the base of support during dynamic body motion or restoring
equilibrium following a balance perturbation through rapid,
successful body position changes.22 While basic balance is
required to perform simple activities of daily living, athletes
encounter greater movement excursions, more rapid joint and
segmental velocities and the need for decreased reaction times
during sporting activities. These demands place an increased
need for maintenance of dynamic balance. This is further com-
plicated in USA by the fact that the surface is responding in an
inconsistent and negative manner. USA need to predictively
shift their weight away from the surface, temporarily destabi-
lizing the system until the surface reacts and places the surface
back under the athlete and the system becomes stable again.
The differences seen in the current study between USA and
SSA in both ApEn and RMS are potentially due to this “surface
moving under the athlete” phenomenon.

The findings of the current study demonstrated that the mag-
nitude of sway was greatly increased when subjects encoun-
tered a negative-feedback environment in the direction of
measurement. Due to the novel nature of the dynamic balance
task, participants may have been less able to control movement
(NON) or may have been more comfortable (USA) in the
negative-feedback environment. These results demonstrate that
training paradigm has a distinct effect on an athlete’s ability to
monitor and control the magnitude and quality of COM motion.

Although this study presents novel findings that suggest the
training paradigm or environment in which an athlete competes
is associated with unique postural control strategies, the current
study does have some limitations. One limitation of the current
study is the limited sample size. The convenience sample was
small, but is representative of the relatively small number of
individuals who regularly participate in unstable surface sports
such as snowboarding and surfing. The second limitation of this
study was the short period of data collection. It is possible that
the 20-s samples were too short to adequately represent postural
profiles. Further, small sample sizes have been suggested to
affect non-linear dynamic calculations. Finally, the current
study found no differences in balance performance between the
NON and SSA groups. It is possible that this is the result of the
recreational nature of the athletes utilized in the current study or
potentially the limited differences in balance performance
between recreational athletes and healthy young adults.
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5. Conclusion

Dynamic testing conditions resulted in an expected decrease
in movement regularity and increase in movement quantity in
all individuals across all feedback conditions and in all direc-
tions when compared to static balance. The increase in regular-
ity of movement in USA in the AP direction may be the result
of the specific needs of their sports. The shift of ML and AP
local axes in the global environment is unique to these athletes
and potentially aids in the development of their motor patterns
during static and dynamic tasks. Future studies should address
the efficacy of positive-compared to negative-feedback balance
training programs on dynamic balance in unskilled athletes or
individuals with balance limitations.
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