27 research outputs found

    Roadmap for the development of the University of North Carolina at Chapel Hill Genitourinary OncoLogy Database—UNC GOLD

    Get PDF
    The management of genitourinary malignancies requires a multidisciplinary care team composed of urologists, medical oncologists and radiation oncologists. A genitourinary (GU) oncology clinical database is an invaluable resource for patient care and research. Although electronic medical records provide a single web-based record used for clinical care, billing and scheduling, information is typically stored in a discipline-specific manner and data extraction is often not applicable to a research setting. A GU oncology database may be used for the development of multidisciplinary treatment plans, analysis of disease-specific practice patterns, and identification of patients for research studies. Despite the potential utility, there are many important considerations that must be addressed when developing and implementing a discipline-specific database

    Predicting the Efficacy of SBRT for Lung Cancer with <sup>18</sup>F-FDG PET/CT Radiogenomics

    No full text
    Purpose: to develop a radiogenomic model on the basis of 18F-FDG PET/CT radiomics and clinical-parameter EGFR for predicting PFS stratification in lung-cancer patients after SBRT treatment. Methods: A total of 123 patients with lung cancer who had undergone 18F-FDG PET/CT examination before SBRT from September 2014 to December 2021 were retrospectively analyzed. All patients’ PET/CT images were manually segmented, and the radiomic features were extracted. LASSO regression was used to select radiomic features. Logistic regression analysis was used to screen clinical features to establish the clinical EGFR model, and a radiogenomic model was constructed by combining radiomics and clinical EGFR. We used the receiver operating characteristic curve and calibration curve to assess the efficacy of the models. The decision curve and influence curve analysis were used to evaluate the clinical value of the models. The bootstrap method was used to validate the radiogenomic model, and the mean AUC was calculated to assess the model. Results: A total of 2042 radiomics features were extracted. Five radiomic features were related to the PFS stratification of lung-cancer patients with SBRT. T-stage and overall stages (TNM) were independent factors for predicting PFS stratification. AUCs under the ROC curve of the radiomics, clinical EGFR, and radiogenomic models were 0.84, 0.67, and 0.86, respectively. The calibration curve shows that the predicted value of the radiogenomic model was in good agreement with the actual value. The decision and influence curve showed that the model had high clinical application values. After Bootstrap validation, the mean AUC of the radiogenomic model was 0.850(95%CI 0.849–0.851). Conclusions: The radiogenomic model based on 18F-FDG PET/CT radiomics and clinical EGFR has good application value in predicting the PFS stratification of lung-cancer patients after SBRT treatment

    Critical review of PET imaging for detection and characterization of the atherosclerotic plaques with emphasis on limitations of FDG-PET compared to NaF-PET in this setting

    No full text
    Applications of various positron emission tomography (PET) tracers for assessing atherosclerosis have been evolving over the years. 18F-fluorodeoxyglucose (FDG)-PET was introduced in 2001 as a probe for this purpose. During the past decade, numerous papers have described a major role for sodium 18F-fluoride (NaF) as another tracer for assessing this vascular disease. We have reviewed the existing data about the merits of both techniques for assessing atherosclerosis. We have to emphasize that our team has been actively involved in conducting research with both tracers over many years. In this review, we have relied upon the data from the CAMONA study which has become a gold standard for defining the role of PET imaging in atherosclerosis. This study was one of the largest of any in recent years and has allowed comprehensive comparison between these two tracers in detecting and quantifying atherosclerosis. Based on what we have learned from this major undertaking, we believe the role of FDG-PET will be limited in assessing atherosclerosis in clinical work-up. This is relevant to both major and coronary arteries. In contrast to NaF-PET, the role of FDG-PET in assessing coronary artery atherosclerosis is almost non-existent. Based on the existing data in this domain, NaF-PET is an ideal imaging modality for both research and clinical assessment of atherosclerosis. The aim of this review is to describe the pros and cons of both approaches based on the existing data in the literature

    Total-Body PET Imaging of Musculoskeletal Disorders

    No full text
    Imaging of musculoskeletal disorders, including arthritis, infection, osteoporosis, sarcopenia, and malignancies, is often limited when using conventional modalities such as radiography, computed tomography (CT), and MR imaging. As a result of recent advances in Positron Emission Tomography (PET) instrumentation, total-body PET/CT offers a longer axial field-of-view, higher geometric sensitivity, and higher spatial resolution compared with standard PET systems. This article discusses the potential applications of total-body PET/CT imaging in the assessment of musculoskeletal disorders

    18F-Sodium Fluoride PET as a Diagnostic Modality for Metabolic, Autoimmune, and Osteogenic Bone Disorders: Cellular Mechanisms and Clinical Applications

    No full text
    In a healthy body, homeostatic actions of osteoclasts and osteoblasts maintain the integrity of the skeletal system. When cellular activities of osteoclasts and osteoblasts become abnormal, pathological bone conditions, such as osteoporosis, can occur. Traditional imaging modalities, such as radiographs, are insensitive to the early cellular changes that precede gross pathological findings, often leading to delayed disease diagnoses and suboptimal therapeutic strategies. 18F-sodium fluoride (18F-NaF)-positron emission tomography (PET) is an emerging imaging modality with the potential for early diagnosis and monitoring of bone diseases through the detection of subtle metabolic changes. Specifically, the dissociated 18F- is incorporated into hydroxyapatite, and its uptake reflects osteoblastic activity and bone perfusion, allowing for the quantification of bone turnover. While 18F-NaF-PET has traditionally been used to detect metastatic bone disease, recent literature corroborates the use of 18F-NaF-PET in benign osseous conditions as well. In this review, we discuss the cellular mechanisms of 18F-NaF-PET and examine recent findings on its clinical application in diverse metabolic, autoimmune, and osteogenic bone disorders

    Non-18F-FDG/18F-NaF radiotracers proposed for the diagnosis and management of diseases of the heart and vasculature

    No full text
    18F-FDG and 18F-NaF have been used extensively in the identification of various cardiovascular diseases, but not without limitations. Several other PET radiotracers have been identified as possible markers for cardiovascular-associated inflammation and infection. Non-18F-FDG/18F-NaF molecules may have utility as alternative radiotracers in the detection and management of cardiovascular diseases, but few have demonstrated clinical value

    Novel musculoskeletal and orthopedic applications of 18F-sodium fluoride PET

    No full text
    Key points 18F-sodium fluoride (NaF) PET can detect causes of bone pain and traumatic injuries that cannot be successfully visualized by other modalities such as radiography, bone scintigraphy, computed tomography, and magnetic resonance. Thus, NaF-PET may contribute to the assessment of occult fractures, child abuse, and stress-related injuries. NaF-PET is an excellent modality to assess osteoarthritis, ankylosing spondylitis, and temporomandibular joint dysfunction. More studies are needed to determine its potential role in inflammatory arthropathies such as rheumatoid arthritis and psoriatic arthritis. Complications of orthopedic surgery such as hardware loosening and infection are readily visualized by NaF-PET. Heterotopic ossification after surgery is another possible imaging target that requires further exploration. Metabolic bone diseases such as osteoporosis and Paget disease can be evaluated over time with NaF-PET to determine effects of pharmacologic interventions such as bisphosphonates and teriparatide. NaF-PET may have a role in assessing primary bone tumors such as osteosarcoma, helping to determine response to treatment and guiding patient management decisions

    Is Imaging Bacteria with PET a Realistic Option or an Illusion?

    No full text
    The application of [18F]-fluorodeoxyglucose ([18F]FDG) as a radiotracer to detect sites of inflammation (either due to bacterial infection or primary inflammation) has led to exploring the role of PET in visualizing bacteria directly at sites of infection. However, the results from such efforts are controversial and inconclusive so far. We aimed to assess the limitations of PET as an effective modality in the diagnosis of bacterial infections. Inflammation due to bacterial infections can be visualized by using [18F]FDG-PET. However, the non-specificity of [18F]FDG makes it undesirable to visualize bacteria as the underlying cause of inflammation. Hence, more specific radiotracers that possibly bind to or accumulate in bacteria-specific receptors or enzymes are being explored. Several radiotracers, including 2-deoxy-2-[18F]fluorosorbitol ([18F]FDS), 6-[18F]-fluoromaltose, [11C]para-aminobenzoic acid ([11C]PABA), radiolabeled trimethoprim (11C-TMP) and its analog fluoropropyl-trimethoprim (18F-FPTMP), other radiolabeled sugars, and antimicrobial drugs have been used to image microorganisms. Unfortunately, no progress has been made in translating the results to routine human use; feasibility and other factors have constrained their success in clinical settings. In the current article, we discuss the limitations of direct bacterial visualization with PET tracers, but emphasize the important role of [18F]FDG-PET as the only option for detecting evidence of infection

    A critical review of PET tracers used for brain tumor imaging

    No full text
    Because enhancement on computed tomography (CT) and MR reflects blood-brain barrier (BBB) changes, molecular imaging with PET-based techniques is needed to assess brain tumor activity, especially in tumors with intact or partially intact BBB. 18F-fluorodeoxyglucose (FDG)-PET has been validated in tumor detection/delineation, recurrence, and prognostication. Although FDG remains the most widely used PET tracer in the evaluation of brain tumors, various other tracers, including amino acid indicators, have been studied extensively. Breakdown of the BBB plays a major role in visualizing brain tumors by radiolabeled amino acid tracers; therefore, this approach is suboptimal for assessing disease activity beyond CT and MR

    Efficacy and Failure Patterns of Early SBRT to the Primary Tumor in Advanced EGFR-Mutation-Positive Lung Cancer with EFGR-TKI Treatment: A Prospective, Single Arm, Phase II Study

    No full text
    Early stereotactic body radiation therapy (SBRT) to the primary tumor combined with epidermal growth factor receptor tyrosine kinase inhibitor (EFGR-TKI) treatment may increase progression-free survival (PFS) by delaying resistance in patients with advanced EGFR-mutant non-small cell lung cancer (NSCLC). In this prospective, single arm, phase II study, patients with advanced NSCLC were treated with EGFR-TKI (icotinib 125 mg tid or gefitinib 250 mg qd) for one month followed by SBRT (40&ndash;60 Gy/5&ndash;8 F/5&ndash;10 d) to the primary tumor with concurrent EGFR-TKI until disease progression. The primary endpoint was PFS and the patterns of failure. Overall survival (OS) and adverse effects (AEs) were secondary endpoints. Overall, 41 advanced NSCLC patients with EGFR mutations received treatment with 24.42 months of median follow-up time. On average, SBRT was initiated 1.49 months after EGFR-TKI administration. Tumors were found to have an average shrinkage rate of 42.50%. Median PFS was 15.23 months (95% CI 13.10&ndash;17.36), while median OS was 27.57 months (95% CI 23.05&ndash;32.09). Thirty-three patients were found to have disease progression, of which new site failure (NF) (22 patients, 66.66%) was the most common pattern, followed by original site failure (OF) (7 patients, 21.21%) and simultaneous OF/NF (ONF) (4 patients, 12.12%). There were no Aes equal to or greater than grade 3, with the most frequent AE being radiation pneumonitis. Therefore, administering therapy targeted at the primary tumor using early SBRT after EGFR-TKI initiation is a new potentially safe and effective approach to treat EGFR-mutant advanced NSCLC
    corecore