14 research outputs found

    Fabrication and Electric Field Dependent Transport Measurements of Mesoscopic Graphite Devices

    Full text link
    We have developed a unique micromechanical method to extract extremely thin graphite samples. Graphite crystallites with thicknesses ranging from 10 - 100 nm and lateral size \sim 2 μ\mum are extracted from bulk. Mesoscopic graphite devices are fabricated from these samples for electric field dependent conductance measurements. Strong conductance modulation as a function of gate voltage is observed in the thinner crystallite devices. The temperature dependent resistivity measurements show more boundary scattering contribution in the thinner graphite samples.Comment: 3 pages, 3 figures included, submitted to Appl. Phys. Let

    Robust Magnetic Order Upon Ultrafast Excitation of an Antiferromagnet

    Get PDF
    The ultrafast manipulation of magnetic order due to optical excitation is governed by the intricate flow of energy and momentum between the electron, lattice, and spin subsystems. While various models are commonly employed to describe these dynamics, a prominent example being the microscopic three temperature model (M3TM), systematic, quantitative comparisons to both the dynamics of energy flow and magnetic order are scarce. Here, an M3TM was applied to the ultrafast magnetic order dynamics of the layered antiferromagnet GdRh2Si2. The femtosecond dynamics of electronic temperature, surface ferromagnetic order, and bulk antiferromagnetic order were explored at various pump fluences employing time- and angle-resolved photoemission spectroscopy and time-resolved resonant magnetic soft X-ray diffraction, respectively. After optical excitation, both the surface ferromagnetic order and the bulk antiferromagnetic order dynamics exhibit two-step demagnetization behaviors with two similar timescales (<1 ps, ∼10 ps), indicating a strong exchange coupling between localized 4f and itinerant conduction electrons. Despite a good qualitative agreement, the M3TM predicts larger demagnetization than the experimental observation, which can be phenomenologically described by a transient, fluence-dependent increased Néel temperature. The results indicate that effects beyond a mean-field description have to be considered for a quantitative description of ultrafast magnetic order dynamics

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Adverse Events Associated With Mohs Micrographic Surgery: Multicenter Prospective Cohort Study of 20 821 Cases at 23 Centers

    No full text
    Importance Detailed information regarding perioperative risk and adverse events associated with Mohs micrographic surgery (MMS) can guide clinical management. Much of the data regarding complications of MMS are anecdotal or report findings from single centers or single events. Objectives To quantify adverse events associated with MMS and detect differences relevant to safety. Design, Setting, and Participants Multicenter prospective inception cohort study of 21 private and 2 institutional US ambulatory referral centers for MMS. Participants were a consecutive sample of patients presenting with MMS for 35 weeks at each center, with staggered start times. Exposure Mohs micrographic surgery. Main Outcomes and Measures Intraoperative and postoperative minor and serious adverse events. Results Among 20 821 MMS procedures, 149 adverse events (0.72%), including 4 serious events (0.02%), and no deaths were reported. Common adverse events reported were infections (61.1%), dehiscence and partial or full necrosis (20.1%), and bleeding and hematoma (15.4%). Most bleeding and wound-healing complications occurred in patients receiving anticoagulation therapy. Use of some antiseptics and antibiotics and sterile gloves during MMS were associated with modest reduction of risk for adverse events. Conclusions and Relevance Mohs micrographic surgery is safe, with a very low rate of adverse events, an exceedingly low rate of serious adverse events, and an undetectable mortality rate. Common complications include infections, followed by impaired wound healing and bleeding. Bleeding and wound-healing issues are often associated with preexisting anticoagulation therapy, which is nonetheless managed safely during MMS. We are not certain whether the small effects seen with the use of sterile gloves and antiseptics and antibiotics are clinically significant and whether wide-scale practice changes would be cost-effective given the small risk reductions
    corecore