55 research outputs found
International cooperation for Mars exploration and sample return
The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR
Dissecting the polar dichotomy of the noncondensable gas enhancement on Mars using the NASA Ames Mars General Circulation Model
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95628/1/jgre2298.pd
Chemical compositions at Mars landing sites subject to Mars Odyssey Gamma Ray Spectrometer constraints
The Mars Odyssey Gamma Ray Spectrometer (GRS) is the first instrument suite to return elemental abundances throughout the midlatitudes of Mars. Concentrations of Cl, Fe, H, K, Si, and Th have been determined to tens of centimeter depths as mass fractions with reasonable confidence. Comparing such data with, or normalizing them to, in situ compositional data is difficult due to issues such as dramatic differences in spatial resolution; difficulties in convolving densities, abundances, and compositions of different regolith components; and a limited number of elements observed in common. We address these concerns in the context of the GRS, using Si at Pathfinder to normalize remote data. In addition, we determine representative in situ compositions for Spirit (both with and without Columbia Hills rocks), Opportunity, and Viking 1 landing sites using GRS-derived H content to hydrate the soil component. Our estimate of the Si mass fraction at Pathfinder, with 13% areal fraction of rocks, is 21%. The composition of major elements, such as Si and Fe, is similar across the four landing sites, while minor elements show significant variability. Areal dominance of soil at all four landing sites causes representative compositions to be driven by the soil component, while proportionally large uncertainties of bulk densities dominate the net uncertainties. GRS compositional determinations compare favorably with the in situ estimates for Cl and K, and for Si by virtue of the normalization. However, the GRS-determined Fe content at each landing site is consistently higher than the in situ value. Copyright 2007 by the American Geophysical Union
Isotopic Analysis and Evolved Gases
Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed
Educational testing of an auditory display regarding seasonal variation of martian polar ice caps
Proceedings of the 9th International Conference on Auditory Display (ICAD), Boston, MA, July 7-9, 2003.During Fall 2002, planetary scientists and astronomy education researchers from the University of Arizona and the National Optical Astronomy Observatory collaborated with composer Marty Quinn of Design Rhythmics Sonification Research Lab in New Hampshire to create both a visual and auditory display of recent gamma ray data from Mars. This product will be used both to highlight the value of data from the current Mars 2001 Odyssey mission and to serve as a testbed for research into the use and effectiveness of auditory displays in science education. This paper provides background on the Mars data presented, an overview of the animation/sonification product, preliminary results from educational testing of the product, and future research plans. The authors hope to present both the sonification and preliminary results of educational research at the ICAD conference this summer
Major-Element Abundances on the Surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer
Orbital gamma-ray measurements obtained by the MESSENGER spacecraft have been analyzed to determine the abundances of the major elements Al, Ca, S, Fe, and Na on the surface of Mercury. The Si abundance was determined and used to normalize those of the other reported elements. The Na analysis provides the first abundance estimate of 2.9 plus or minus 0.1 wt% for this element on Mercury's surface. The other elemental results (S/Si = 0.092 plus or minus 0.015, Ca/Si = 0.24 plus or minus 0.05, and Fe/Si = 0.077 plus or minus 0.013) are consistent with those previously obtained by the MESSENGER X-Ray Spectrometer, including the high sulfur and low iron abundances. Because of different sampling depths for the two techniques, this agreement indicates that Mercury's regolith is, on average, homogenous to a depth of tens of centimeters. The elemental results from gamma-ray and X-ray spectrometry are most consistent with petrologic models suggesting that Mercury's surface is dominated by Mg-rich silicates. We also compare the results with those obtained during the MESSENGER flybys and with ground-based observations of Mercury's surface and exosphere
Recommended from our members
Mid-latitude composition of mars from thermal and epithermal neutrons
Epithermal neutron data acquired by Mars Odyssey have been analyzed to determine global maps of water-equivalent hydrogen abundance. By assuming that hydrogen was distributed uniformly with depth within the surface, a map of minimum water abundance was obtained. The addition of thermal neutrons to this analysis could provide information needed to determine water stratigraphy. For example, thermal and epithermal neutrons have been used together to determine the depth and abundance of waterequivalent hydrogen of a buried layer in the south polar region. Because the emission of thermal neutrons from the Martian surface is sensitive to absorption by elements other than hydrogen, analysis of stratigraphy requires that the abundance of these elements be known. For example, recently published studies of the south polar region assumed that the Mars Pathfinder mean soil composition is representative of the regional soil composition, This assumption is partially motivated by the fact that Mars appears to have a well-mixed global dust cover and that the Pathfinder soil composition is representative of the mean composition of the Martian surface. In this study, we have analyzed thermal and epithermal neutron data measured by the neutron spectrometer subsystem of the gamma ray spectrometer to determine the spatial distribution of the composition of elements other than hydrogen. We have restricted our analysis to mid-latitude regions for which we have corrected the neutron counting data for variations in atmospheric thickness
OSIRIS-REx Encounters Bennu: Initial Assessment from the Approach Phase
The OSIRIS-REx spacecraft launched on September 8, 2016, on a seven-year journey to return samples from asteroid (101955) Bennu. This presentation summarizes the scientific results from the Approach and Preliminary Survey phases. Bennu observations are set to begin on August 17, 2018,when the asteroid is bright enough for detection by the PolyCam. PolyCam and MapCam collect data to survey the asteroid environment for any hazards and characterize the asteroid point-source photometric properties. Resolved images acquired during final approach, starting in late October 2018, allow the creation of a shape model using stereophotoclinometry (SPC), needed by both the navigation team and science planners. The OVIRS and OTES spectrometers characterize the point- source spectral properties over a full rotation period, providing a first look at any features and thermophysical properties. TAGSAM is released from the launch container and deployed into the sampling configuration then returned to the stow position.Preliminary Survey follows the Approach Phase in early December 2018. This phase consists of a series of hyperbolic trajectories that cross over the North and South poles and the equator of Bennu at a close-approach distance of 7 km. Images from these Preliminary Survey passes provide data to complete the 75-cm resolution SPC global shape model and solve for the rotation state. Once the shape model is complete, the asteroid coordinate system is defined for co-registration of all data products. These higher-resolution images also constrain the photometric properties and allow for an initial assessment of the geology. In Preliminary Survey the team also obtains the first OLA data, providing a measure of the surface topography. OVIRS and OTES collect data as "ride-along" instruments, with the spacecraft pointing driven by imaging constraints. These data provide a first look at the spectral variation across the surface of Bennu. Radio science measurements, combined with altimetry and imagery, determine Bennu's mass, a prerequisite to placing the spacecraft into orbit in late December 2018. Together, data from the Approach and Preliminary Survey phases set the stage for the extensive mapping planned for 2019. These dates are the baseline plan. Any contingency or unexpected discovery may change this mission profile
The ABC130 barrel module prototyping programme for the ATLAS strip tracker
For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector,
consisting of silicon pixel, silicon strip and transition radiation
sub-detectors, will be replaced with an all new 100 % silicon tracker, composed
of a pixel tracker at inner radii and a strip tracker at outer radii. The
future ATLAS strip tracker will include 11,000 silicon sensor modules in the
central region (barrel) and 7,000 modules in the forward region (end-caps),
which are foreseen to be constructed over a period of 3.5 years. The
construction of each module consists of a series of assembly and quality
control steps, which were engineered to be identical for all production sites.
In order to develop the tooling and procedures for assembly and testing of
these modules, two series of major prototyping programs were conducted: an
early program using readout chips designed using a 250 nm fabrication process
(ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm
processing (ABC130 and HCC130 chips). This second generation of readout chips
was used for an extensive prototyping program that produced around 100
barrel-type modules and contributed significantly to the development of the
final module layout. This paper gives an overview of the components used in
ABC130 barrel modules, their assembly procedure and findings resulting from
their tests.Comment: 82 pages, 66 figure
Recommended from our members
Sn 2010ay Is a Luminous and Broad-Lined Type Ic Supernova Within a Low-Metallicity Host Galaxy
We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova (SN) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3π survey just ∼ 4 days after explosion. The SN had a peak luminosity, MR ≈ −20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is vSi ≈ 19 × 103 km s−1 at ∼ 40 days after explosion, 2 − 5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines ∼ 2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, MNi = 0.9 M⊙. Modeling of the light-curve points to a total ejecta mass, Mej ≈ 4.7M⊙, and total kinetic energy, EK ≈ 11 × 1051 ergs. The ratio of MNi to Mej is ∼ 2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log(O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and ∼ 0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) Ic supernovae. We constrain any gammaray emission with Eγ . 6 × 1048 erg (25-150 keV) and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy, E & 1048 erg. We therefore rule out the association of a relativistic outflow like those which accompanied SN 1998bw and traditional long-duration GRBs, but place less-stringent constraints on a weak afterglow like that seen from XRF 060218. These observations challenge the importance of progenitor metallicity for the production of a GRB, and suggest that other parameters also play a key role.Astronom
- …