56 research outputs found

    Coral bleaching following wintry weather

    Get PDF
    Extensive coral bleaching Occurred intertidally in early August 2003 in the Capricorn Bunker group (Wistari Reef, Heron and One Tree Islands; Southern Great Barrier Reef). The affected intertidal coral had been exposed to unusually cold (minimum = 13.3degreesC; wet bulb temperature = 9degreesC) and dry winds (44% relative humidity) for 2 d during predawn low tides. Coral bleached in the upper 10 cm of their branches and had less than 0.2 x 10(6) cell cm(-2) as compared with over 2.5 x 10(6), Cell cm(-2) in nonbleached areas. Dark-adapted quantum yields did not differ between symbionts in bleached and nonbleached areas. Exposing symbionts to light, however, led to greater quenching of Photosystem 11 in symbionts in the bleached coral. Bleached areas of the affected colonies had died by September 2003, with areas that were essentially covered by more than 80% living coral decreasing to less than 10% visible living coral cover. By January 2004, coral began to recover, principally from areas of colonies that were not exposed during low tide (i.e., from below dead, upper regions). These data highlight the importance of understanding local weather patterns as well as the effects of longer term trends in global climate

    Identifying oceanic thermal anomalies in the coral triangle region

    Get PDF
    Mass coral bleaching has historically been linked to episodes of thermal stress. While locationspecific time-series data have been examined, the oceanic thermal anomalies that underlie broad-scale thermal stress events are apparently unstudied quantitatively in terms of their spatial extent, temporal development, and intensity. Knowledge of the spatial and temporal parameters that characterise anomalies can be useful in understanding how bleaching-level stress develops, providing context for and a basis for modelling of future events. Here we examine historical satellite sea-surface temperature (SST) data with the goal of identifying and characterising oceanic anomalies in the Coral Triangle region. This region is of interest because it is influenced by the Indian and Pacific Oceans and is the centre of coral ecosystem diversity and significant coral reef conservation efforts. Oceanic anomalies are defined here using the HotSpot metric, which is the positive variation in temperature above the maximum of the monthly mean climatology values. This metric describes thermal stress that has been linked to coral bleaching episodes. It is proposed that the method for identifying oceanic anomalies described here be applied to datasets of varying spatial resolutions to evaluate if, and how, the characterisations are resolution-dependent. If these anomalies can be comparably identified and characterised at a coarser spatial resolution, this could open the way to examining the likely impact of oceanic thermal anomalies further back in time using historical datasets or in the future using climate models, both of which are available only at lower spatial and temporal resolutions

    Unprecedented early-summer heat stress and forecast of coral bleaching on the Great Barrier Reef, 2021-2022

    Get PDF
    The Great Barrier Reef (GBR) is predicted to undergo its sixth mass coral bleaching event during the Southern Hemisphere summer of 2021-2022. Coral bleaching-level heat stress over the GBR is forecast to start earlier than any previous year in the satellite record (1985-present). The National Oceanic and Atmospheric Administration (NOAA) Coral Reef Watch (CRW) near real-time satellite-based heat stress products were used to investigate early-summer sea surface temperature (SST) and heat stress conditions on the GBR during late 2021. As of 14 December 2021, values of instantaneous heat stress (Coral Bleaching HotSpots) and accumulated heat stress over a 12-week running window (Degree Heating Weeks) on the GBR were unprecedented in the satellite record. Further, 89% of GBR satellite reef pixels for this date in 2021 had a positive seven-day SST trend of greater than 0.2 degrees Celsius/week. Background temperatures (the minimum temperature over the previous 29 days) were alarmingly high, with 87% of GBR reef pixels on 14 December 2021 being greater than the maximum SST over that same 29-day period for any year from 1985-2020. The GBR is starting the 2021-2022 summer season with more accumulated heat than ever before, which could have disastrous consequences for the health, recovery, and future of this critical reef system

    Commentary: reconstructing four centuries of temperature-induced coral bleaching on the great barrier reef

    Get PDF
    Coral reefs are spectacular ecosystems found along tropical coastlines where they provide goods and services to hundreds of millions of people. While under threat from local factors, coral reefs are increasingly susceptible to ocean warming from anthropogenic climate change. One of the signature disturbances is the large-scale, and often deadly, breakdown of the symbiosis between corals and dinoflagellates. This is referred to as mass coral bleaching and often causes mass mortality. The first scientific records of mass bleaching date to the early 1980s (Hoegh-Guldberg et al., 2017). Kamenos and Hennige (2018, hereafter KH18), however, claim to show that mass coral bleaching is not a recent phenomenon, and has occurred regularly over the past four centuries (1572–2001) on the Great Barrier Reef (GBR), Australia. They support their claim by developing a putative proxy for coral bleaching that uses the suggested relationship between elevated sea surface temperatures (SSTs) and reduced linear extension rates of 44 Porites spp. coral cores from 28 GBR reefs. If their results are correct, then mass coral bleaching events have been a frequent feature for hundreds of years in sharp contrast to the vast majority of scientific evidence. There are, however, major flaws in the KH18 methodology. Their use of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset (based on ship and buoy observations) for reef temperatures from 1854 to 2001, ignores the increasing unreliability of these data which become sparse, less rigorous, and more interpolated going back in time. To demonstrate how the quality of these data degrades, we plot the average number of SST observations per month that contribute to each 200 x 200 km ERSST pixel (Figure 1A, black line). Note that from 1854 to 1900 the four ERSST pixels used by KH18 averaged only 0.85 observations per month, and 82% of these months had no observations at all. Given the heterogeneous nature of SST at local and regional levels, using such broad-scale data as ERSST, is likely to produce substantial errors at reef scales (Figure 1A, red line prior to 1900)

    Coral Reef Ecosystems under Climate Change and Ocean Acidification

    Get PDF
    Coral reefs are found in a wide range of environments, where they provide food and habitat to a large range of organisms as well as providing many other ecological goods and services. Warm-water coral reefs, for example, occupy shallow sunlit, warm, and alkaline waters in order to grow and calcify at the high rates necessary to build and maintain their calcium carbonate structures. At deeper locations (40–150 m), “mesophotic” (low light) coral reefs accumulate calcium carbonate at much lower rates (if at all in some cases) yet remain important as habitat for a wide range of organisms, including those important for fisheries. Finally, even deeper, down to 2,000 m or more, the so-called “cold-water” coral reefs are found in the dark depths. Despite their importance, coral reefs are facing significant challenges from human activities including pollution, over-harvesting, physical destruction, and climate change. In the latter case, even lower greenhouse gas emission scenarios (such as Representative Concentration Pathway RCP 4.5) are likely drive the elimination of most warm-water coral reefs by 2040–2050. Cold-water corals are also threatened by warming temperatures and ocean acidification although evidence of the direct effect of climate change is less clear. Evidence that coral reefs can adapt at rates which are sufficient for them to keep up with rapid ocean warming and acidification is minimal, especially given that corals are long-lived and hence have slow rates of evolution. Conclusions that coral reefs will migrate to higher latitudes as they warm are equally unfounded, with the observations of tropical species appearing at high latitudes “necessary but not sufficient” evidence that entire coral reef ecosystems are shifting. On the contrary, coral reefs are likely to degrade rapidly over the next 20 years, presenting fundamental challenges for the 500 million people who derive food, income, coastal protection, and a range of other services from coral reefs. Unless rapid advances to the goals of the Paris Climate Change Agreement occur over the next decade, hundreds of millions of people are likely to face increasing amounts of poverty and social disruption, and, in some cases, regional insecurity

    Fine-Tuning Heat Stress Algorithms to Optimise Global Predictions of Mass Coral Bleaching

    Get PDF
    Increasingly intense marine heatwaves threaten the persistence of many marine ecosystems. Heat stress-mediated episodes of mass coral bleaching have led to catastrophic coral mortality globally. Remotely monitoring and forecasting such biotic responses to heat stress is key for effective marine ecosystem management. The Degree Heating Week (DHW) metric, designed to monitor coral bleaching risk, reflects the duration and intensity of heat stress events and is computed by accumulating SST anomalies (HotSpot) relative to a stress threshold over a 12-week moving window. Despite significant improvements in the underlying SST datasets, corresponding revisions of the HotSpot threshold and accumulation window are still lacking. Here, we fine-tune the operational DHW algorithm to optimise coral bleaching predictions using the 5 km satellite-based SSTs (CoralTemp v3.1) and a global coral bleaching dataset (37,871 observations, National Oceanic and Atmospheric Administration). After developing 234 test DHW algorithms with different combinations of the HotSpot threshold and accumulation window, we compared their bleaching prediction ability using spatiotemporal Bayesian hierarchical models and sensitivity–specificity analyses. Peak DHW performance was reached using HotSpot thresholds less than or equal to the maximum of monthly means SST climatology (MMM) and accumulation windows of 4–8 weeks. This new configuration correctly predicted up to an additional 310 bleaching observations globally compared to the operational DHW algorithm, an improved hit rate of 7.9%. Given the detrimental impacts of marine heatwaves across ecosystems, heat stress algorithms could also be fine-tuned for other biological systems, improving scientific accuracy, and enabling ecosystem governance

    Steps to Develop Early Warning Systems and Future Scenarios of Storm Wave-Driven Flooding Along Coral Reef-Lined Coasts

    Get PDF
    ABSTRACT: Tropical coral reef-lined coasts are exposed to storm wave-driven flooding. In the future, flood events during storms are expected to occur more frequently and to be more severe due to sea-level rise, changes in wind and weather patterns, and the deterioration of coral reefs. Hence, disaster managers and coastal planners are in urgent need of decision-support tools. In the short-term, these tools can be applied in Early Warning Systems (EWS) that can help to prepare for and respond to impending storm-driven flood events. In the long-term, future scenarios of flooding events enable coastal communities and managers to plan and implement adequate risk-reduction strategies. Modeling tools that are used in currently available coastal flood EWS and future scenarios have been developed for open-coast sandy shorelines, which have only limited applicability for coral reef-lined shorelines. The tools need to be able to predict local sea levels, offshore waves, as well as their nearshore transformation over the reefs, and translate this information to onshore flood levels. In addition, future scenarios require long-term projections of coral reef growth, reef composition, and shoreline change. To address these challenges, we have formed the UFORiC (Understanding Flooding of Reef-lined Coasts) working group that outlines its perspectives on data and model requirements to develop EWS for storms and scenarios specific to coral reef-lined coastlines. It reviews the state-of-the-art methods that can currently be incorporated in such systems and provides an outlook on future improvements as new data sources and enhanced methods become available

    An Introduction to the \u27Oceans and Society: Blue Planet\u27 Initiative

    Get PDF
    We live on a blue planet, and Earth’s waters benefit many sectors of society. The future of our blue planet is increasingly reliant on the services delivered by marine, coastal and inland waters and on the advancement of effective, evidence-based decisions on sustainable development. ‘Oceans and Society: Blue Planet’ is an initiative of the Group on Earth Observations (GEO) that aims to ensure the sustained development and use of ocean and coastal observations for the benefit of society. The initiative works to advance and exploit synergies among the many observational programmes devoted to ocean and coastal waters; to improve engagement with a variety of stakeholders for enhancing the timeliness, quality and range of information delivered; and to raise awareness of the societal benefits of ocean observations at the public and policy levels. This paper summarises the role of the initiative, current activities and considerations for future directions
    corecore