16 research outputs found

    Transvaginal Ultrasound Shear Wave Elastography for the Evaluation of Benign Uterine Pathologies: A Prospective Pilot Study

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147163/1/jum14676.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147163/2/jum14676_am.pd

    LI-RADS: A Conceptual and Historical Review from Its Beginning to Its Recent Integration into AASLD Clinical Practice Guidance

    Get PDF
    The Liver Imaging Reporting and Data System (LI-RADS®) is a comprehensive system for standardizing the terminology, technique, interpretation, reporting, and data collection of liver observations in individuals at high risk for hepatocellular carcinoma (HCC). LI-RADS is supported and endorsed by the American College of Radiology (ACR). Upon its initial release in 2011, LI-RADS applied only to liver observations identified at CT or MRI. It has since been refined and expanded over multiple updates to now also address ultrasound-based surveillance, contrast-enhanced ultrasound for HCC diagnosis, and CT/MRI for assessing treatment response after locoregional therapy. The LI-RADS 2018 version was integrated into the HCC diagnosis, staging, and management practice guidance of the American Association for the Study of Liver Diseases (AASLD). This article reviews the major LI-RADS updates since its 2011 inception and provides an overview of the currently published LI-RADS algorithms

    Comparison of Diffusion Tensor Imaging and Magnetic Resonance Perfusion Imaging in Differentiating Recurrent Brain Neoplasm From Radiation Necrosis

    No full text
    RATIONALE AND OBJECTIVES: To compare differences in diffusion tensor imaging (DTI) and dynamic susceptibility-weighted contrast-enhanced (DSC) magnetic resonance (MR) perfusion imaging characteristics of recurrent neoplasm and radiation necrosis in patients with brain tumors previously treated with radiotherapy with or without surgery and chemotherapy. MATERIALS AND METHODS: Patients with a history of brain neoplasm previously treated with radiotherapy with or without chemotherapy and surgery who developed a new enhancing lesion on posttreatment surveillance MRI were enrolled. DSC perfusion MRI and DTI were performed. Region of interest cursors were manually drawn in the contrast-enhancing lesions, in the perilesional white matter edema, and in the contralateral normal-appearing frontal lobe white matter. DTI and DSC perfusion MR indices were compared in recurrent tumor versus radiation necrosis. RESULTS: Twenty-two patients with 24 lesions were included. Sixteen (67%) lesions were placed into the recurrent neoplasm group and eight (33%) lesions were placed into the radiation necrosis group using biopsy results as the gold standard in all but three patients. Mean apparent diffusion coefficient values, mean parallel eigenvalues, and mean perpendicular eigenvalues in the contrast-enhancing lesion were significantly lower, and relative cerebral blood volume was significantly higher for the recurrent neoplasm group compared to the radiation necrosis group (P < 0.01, P = 0.03, P < 0.01, and P < 0.01, respectively). CONCLUSIONS: The combined assessment of DTI and DSC MR perfusion properties of new contrast-enhancing lesions is helpful in distinguishing recurrent neoplasm from radiation necrosis in patients with a history of brain neoplasm previously treated with radiotherapy with or without surgery and chemotherapy

    SBRT for HCC: Overview of technique and treatment response assessment

    No full text
    Stereotactic body radiation therapy (SBRT) is an emerging locoregional treatment (LRT) modality used in the management of patients with hepatocellular carcinoma (HCC). The decision to treat HCC with LRT is evaluated in a multidisciplinary setting, and the specific LRT chosen depends on the treatment intent, such as bridge-to-transplant, down-staging to transplant, definitive/curative treatment, and/or palliation, as well as underlying patient clinical factors. Accurate assessment of treatment response is necessary in order to guide clinical management in these patients. Patients who undergo LRT need continuous imaging evaluation to assess treatment response and to evaluate for recurrence. Thus, an accurate understanding of expected post-SBRT imaging findings is critical to avoid misinterpreting normal post-treatment changes as local progression or viable tumor. SBRT-treated HCC demonstrates unique imaging findings that differ from HCC treated with other forms of LRT. In particular, SBRT-treated HCC can demonstrate persistent APHE and washout on short-term follow-up imaging. This brief review summarizes current evidence for the use of SBRT for HCC, including patient population, SBRT technique and procedure, tumor response assessment on contrast-enhanced cross-sectional imaging with expected findings, and pitfalls in treatment response evaluation
    corecore