237 research outputs found

    Studies on the Contact Sensitization of Man with Simple Chemicals

    Get PDF
    Dinitrochlorobenzene (DNCB) coupled to peripheral blood erythrocytes or leukocytes forms a particulate complex, DNCB-antigen. The addition of DNCB-antigen induced blastogenesis and DNA synthesis in leukocyte cultures from DNCB-sensitized human subjects and not in leukocyte cultures from nonsensitized controls. In general, sensitized subjects who displayed a higher degree of cutaneous reactivity to DNCB, as manifested by duration and intensity of dermatitis, also showed a greater blastogenic response to DNCB-antigen in vitro. This quantitative correlation, however, was not invariant. Certain soluble factor(s), or lymphokines are released following the addition of DNCB-antigen to leukocyte cultures prepared from some sensitive subjects who were rechallenged one or more times with DNCB. These lymphokines induce blastogenesis in secondary target leukocyte populations from nonsensitized subjects. Extended studies are presented which show little or no lymphokine activity in peripheral blood leukocyte cultures during a primary immune response, despite high degrees of blastogenic activity in response to DNCB-antigen. Significant lymphokine activity was observed only following additional rechallenge with DNCB.Blastogenesis and skin reactivity specific for DNCB have been shown to develop at about the same time during a primary immune response. This, along with the quantitative correlation shown in this communication, suggests that both processes probably reflect thymic-dependent cellular immunity. The appearance of lymphokine activity following rechallenge with DNCB suggests that DNCB-induced lymphokines may represent an amplifying mechanism of the cellular immune response that involves recruitment of previously uncommitted lymphocytes

    I am a Candidate for President : A Functional Analysis of Presidential Announcement Speeches, 1960-2004

    Get PDF
    This study investigates the nature of presidential announcement speeches, messages that introduce the current crop of contenders for the White House to voters and the news media. Announcement speeches are typically voters‘ initial exposure to these politicians as candidates for the White House. Seventy-five presidential announcement speeches from 1960 through 2004 were analyzed with the Functional Theory of Campaign Discourse. Acclaims were over three times as common as attacks; defenses were quite rare. Republicans and winners were more positive than Democrats or losers. These speeches were evenly split between policy and character. Democrats discussed policy more, and character less, than Republicans. Candidates emphasized issues owned by their political party more than candidates from the opposing party

    Beluga Vocalizations Decrease in Response to Vessel Traffic in the Mackenzie River Estuary

    Get PDF
    Vessel traffic negatively affects marine mammals by causing behavioural disturbance, acoustic masking, contamination (i.e., oil spills), and ship strikes. Few studies have examined the effects of vessels on marine mammals in the Arctic, but beluga whales appear to be especially sensitive to vessel traffic. We examine how the vocalizations of belugas are impacted by vessel traffic in the Tarium Niryutait Marine Protected Area in the Mackenzie River estuary of the western Canadian Arctic. Between one and four acoustic recorders were deployed between June and August each year between 2015 and 2018 near the only shipping channel at this site. We examined beluga vocalizations from acoustic recordings over four summers and assessed how the distance to the nearest vessel passing the acoustic recorder affected the number of vocalizations. Beluga vocalizations within the range of the acoustic recorder decreased significantly when vessels were within 5 km of the acoustic recorder. This result suggests either that belugas are avoiding the vessel or that they reduce their vocalization in response to vessel traffic. Future work is needed to assess exactly how belugas are reacting to vessel traffic in this area and what the long-term consequences of these reactions are. Management measures for reducing these impacts must be carefully considered, especially since these vessels are very restricted in where they can travel, and many of the vessels are necessary for the livelihoods of local communities.La circulation maritime a des effets négatifs sur les mammifères marins, car elle entraîne des perturbations comportementales, masque leurs signaux acoustiques et engendre de la contamination (comme des déversements de pétrole) et des collisions. Bien que peu d’études aient examiné les effets des bateaux sur les mammifères marins de l’Arctique, les bélugas semblent particulièrement sensibles à la circulation maritime. Dans cet article, nous examinons en quoi les vocalisations des bélugas sont touchées par la circulation maritime dans la zone de protection marine de Tarium Niryutait faisant partie de l’estuaire du fleuve Mackenzie, dans l’ouest de l’Arctique canadien. Entre un et quatre enregistreurs acoustiques ont été déployés de juin à août de chaque année entre 2015 et 2018, à proximité du seul chenal de navigation de l’endroit. Nous avons examiné les vocalisations des bélugas prélevées à l’aide des enregistreurs acoustiques au cours de quatre étés, et évalué en quoi la distance du bateau passant le plus près de l’enregistreur acoustique avait un effet sur le nombre de vocalisations. Les vocalisations des bélugas dans la zone de l’enregistreur acoustique diminuaient considérablement lorsque les bateaux se trouvaient à moins de cinq kilomètres de l’enregistreur. Ce résultat suggère soit que les bélugas évitent les bateaux, soit qu’ils réduisent leurs vocalisations en réponse à la circulation maritime. Il y a lieu de pousser cette étude plus loin pour évaluer exactement comment les bélugas réagissent à la circulation des bateaux dans cette région, et quelles sont les conséquences à long terme de ces réactions. Il y a lieu aussi de considérer avec soin des mesures de gestion pour réduire ces incidences, surtout parce que les déplacements de ces bateaux sont assujettis à de nombreuses restrictions et parce que grand nombre des bateaux qui passent par là sont nécessaires à la subsistance des collectivités de la région. &nbsp

    Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 envelope glycoprotein trimers on neutralizing antibody induction

    Get PDF
    Previously, VLPs bearing JR-FL strain HIV-1 Envelope trimers elicited potent neutralizing antibodies (nAbs) in 2/8 rabbits PLoS Pathog 11(5): e1004932) by taking advantage of a naturally absent glycan at position 197 that borders the CD4 binding site (CD4bs). In new immunizations, we attempted to improve nAb responses by removing the N362 glycan that also lines the CD4bs. All 4 rabbits developed nAbs. One targeted the N197 glycan hole like our previous sera. Two sera depended on the N463 glycan, again suggesting CD4bs overlap. Heterologous boosts appeared to reduce nAb clashes with the N362 glycan. The fourth serum targeted a N362 glycan-sensitive epitope. VLP manufacture challenges prevented us from immunizing larger rabbit numbers to empower a robust statistical analysis. Nevertheless, trends suggest that targeted glycan removal may improve nAb induction by exposing new epitopes and that it may be possible to modify nAb speciUcity using rational heterologous boosts

    Treatment outcomes of new tuberculosis patients hospitalized in Kampala, Uganda: a prospective cohort study.

    Get PDF
    BACKGROUND: In most resource limited settings, new tuberculosis (TB) patients are usually treated as outpatients. We sought to investigate the reasons for hospitalisation and the predictors of poor treatment outcomes and mortality in a cohort of hospitalized new TB patients in Kampala, Uganda. METHODS AND FINDINGS: Ninety-six new TB patients hospitalised between 2003 and 2006 were enrolled and followed for two years. Thirty two were HIV-uninfected and 64 were HIV-infected. Among the HIV-uninfected, the commonest reasons for hospitalization were low Karnofsky score (47%) and need for diagnostic evaluation (25%). HIV-infected patients were commonly hospitalized due to low Karnofsky score (72%), concurrent illness (16%) and diagnostic evaluation (14%). Eleven HIV uninfected patients died (mortality rate 19.7 per 100 person-years) while 41 deaths occurred among the HIV-infected patients (mortality rate 46.9 per 100 person years). In all patients an unsuccessful treatment outcome (treatment failure, death during the treatment period or an unknown outcome) was associated with duration of TB symptoms, with the odds of an unsuccessful outcome decreasing with increasing duration. Among HIV-infected patients, an unsuccessful treatment outcome was also associated with male sex (P = 0.004) and age (P = 0.034). Low Karnofsky score (aHR = 8.93, 95% CI 1.88 - 42.40, P = 0.001) was the only factor significantly associated with mortality among the HIV-uninfected. Mortality among the HIV-infected was associated with the composite variable of CD4 and ART use, with patients with baseline CD4 below 200 cells/µL who were not on ART at a greater risk of death than those who were on ART, and low Karnofsky score (aHR = 2.02, 95% CI 1.02 - 4.01, P = 0.045). CONCLUSION: Poor health status is a common cause of hospitalisation for new TB patients. Mortality in this study was very high and associated with advanced HIV Disease and no use of ART

    Attraction of the Invasive Halyomorpha halys (Hemiptera: Pentatomidae) to Traps Baited with Semiochemical Stimuli Across the United States

    Get PDF
    A recent identification of the two-component aggregation pheromone of the invasive stink bug species, Halyomorpha halys (Stål), in association with a synergist, has greatly improved the ability to accurately monitor the seasonal abundance and distribution of this destructive pest. We evaluated the attraction of H. halys to black pyramid traps baited with lures containing the pheromone alone, the synergist methyl (2E,4E,6Z)-decatrienoate (MDT) alone, and the two lures in combination. Traps were deployed around areas of agricultural production including fruit orchards, vegetables, ornamentals, or row crops in Delaware, Maryland, North Carolina, New Jersey, New York, Ohio, Oregon, Pennsylvania, Virginia, and West Virginia from mid-April to mid-October, 2012 and 2013. We confirmed that H. halys adults and nymphs are attracted to the aggregation pheromone season long, but that attraction is significantly increased with the addition of the synergist MDT. H. halys adults were detected in April with peak captures of overwintering adults in mid- to late May. The largest adult captures were late in the summer, typically in early September. Nymphal captures began in late May and continued season long. Total captures declined rapidly in autumn and ceased by mid-October. Captures were greatest at locations in the Eastern Inland region, followed by those in the Eastern Coastal Plain and Pacific Northwest. Importantly, regardless of location in the United States, all mobile life stages of H. halys consistently responded to the combination of H. halys aggregation pheromone and the synergist throughout the entire season, suggesting that these stimuli will be useful tools to monitor for H. halys in managed system

    Climate Process Team on internal wave–driven ocean mixing

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 98 (2017): 2429-2454, doi:10.1175/BAMS-D-16-0030.1.Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.We are grateful to U.S. CLIVAR for their leadership in instigating and facilitating the Climate Process Team program. We are indebted to NSF and NOAA for sponsoring the CPT series.2018-06-0

    Climate Process Team on Internal-Wave Driven Ocean Mixing

    Get PDF
    Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean, and consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Climate models have been shown to be very sensitive not only to the overall level but to the detailed distribution of mixing; sub-grid-scale parameterizations based on accurate physical processes will allow model forecasts to evolve with a changing climate. Spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and destruction of internal waves, which are thought to supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF and NOAA supported Climate Process Team has been engaged in developing, implementing and testing dynamics-base parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions

    ASIRI : an ocean–atmosphere initiative for Bay of Bengal

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859–1884, doi:10.1175/BAMS-D-14-00197.1.Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air–Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI–RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.2017-04-2
    corecore