3,250 research outputs found

    Ice Strengthening of Great Lakes Bulk Carriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/154126/1/39015075439102.pd

    A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    Get PDF
    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success

    Predicting Pecan Nut Casebearer Activity in Southeast Kansas

    Get PDF

    Monte Carlo study of the XY-model on quasi-periodic lattices

    Get PDF
    Monte Carlo Simulations were carried out using a nearest neighbour ferromagnetic XYmodel, on both 2-D and 3-D quasi-periodic lattices. In the case of 2-D, both the unfrustrated and frustrated XV-model were studied. For the unfrustrated 2-D XV-model, we have examined the magnetization, specific heat, linear susceptibility, helicity modulus and the derivative of the helicity modulus with respect to inverse temperature. The behaviour of all these quatities point to a Kosterlitz-Thouless transition occuring in temperature range Te == (1.0 -1.05) JlkB and with critical exponents that are consistent with previous results (obtained for crystalline lattices) . However, in the frustrated case, analysis of the spin glass susceptibility and EdwardsAnderson order parameter, in addition to the magnetization, specific heat and linear susceptibility, support a spin glass transition. In the case where the 'thin' rhombus is fully frustrated, a freezing transition occurs at Tf == 0.137 JlkB , which contradicts previous work suggesting the critical dimension of spin glasses to be de > 2 . In the 3-D systems, examination of the magnetization, specific heat and linear susceptibility reveal a conventional second order phase transition. Through a cumulant analysis and finite size scaling, a critical temperature of Te == (2.292 ± 0.003) JI kB and critical exponents of 0:' == 0.03 ± 0.03, f3 == 0.30 ± 0.01 and I == 1.31 ± 0.02 have been obtained

    Encouraging Positive Self-Concepts in Children

    Get PDF

    Manufacture of cream cheese involving the use of dry skim milk

    Get PDF
    Caption title.Digitized 2006 AES MoU

    UC-30 Malware Analysis Using Reverse Engineering

    Get PDF
    Cybercrimes are a billion-dollar industry that is rapidly growing by the day. One of the biggest threats faced by companies is the infection of malware. New forms of malware are created daily and ever evolving to evade detection methods. Understanding how malware infects your system and how it eludes detection is crucial to keeping a company\u27s network and devices safe. During this project we will be using reverse engineering methods to better understand the functionality of malware, as well as how it eludes detection. We will be using IDAPro and WiDbg to perform the reverse engineering. Using this knowledge, we will create a set of security standards to help companies to protect themselves from these infections. We will also create a document on how to secure a virtual machine for malware analysis. This will help future students who also are interested in analyzing malware themselves. Our preliminary results include understanding some of the most used forms of malware evasion techniques. These techniques include stalling delays, which is when a piece of malware remains idle to defeat time-based antivirus scans. Another technique is action required delays, which is when a piece of malware will only execute once an action or group of actions are performed this will trigger the malware to execute. Another way that malware is able to evade detection is fragmentation. In this technique the malware will split into multiple different fragments, which alone do not raise flags as suspicious, then rejoin and execute.Advisors(s): Dr. Hossain ShahriarTopic(s): SecurityIT 498

    Modern trends in the retail ice cream store

    Get PDF
    Cover title.Includes bibliographical references

    Disturbances in the natural oxidation-reduction equilibrium of milk with special reference to the use of dehydrated milks in the manufacture of cottage cheese

    Get PDF
    Publication authorized June 29, 1934."The data presented in this bulletin were taken from a paper submitted by the junior author in partial fulfillment of the requirements for the degree of Master of Arts in the Graduate School of the University of Missouri, 1934"--P. [3].Includes bibliographical references (page 26)

    The effect of dextrose and sucrose sugars upon the properties of ice cream

    Get PDF
    Publication authorized December 24, 1941.Includes bibliographical references (page 27)
    corecore