4,722 research outputs found

    Inclination-Independent Galaxy Classification

    Full text link
    We present a new method to classify galaxies from large surveys like the Sloan Digital Sky Survey using inclination-corrected concentration, inclination-corrected location on the color-magnitude diagram, and apparent axis ratio. Explicitly accounting for inclination tightens the distribution of each of these parameters and enables simple boundaries to be drawn that delineate three different galaxy populations: Early-type galaxies, which are red, highly concentrated, and round; Late-type galaxies, which are blue, have low concentrations, and are disk dominated; and Intermediate-type galaxies, which are red, have intermediate concentrations, and have disks. We have validated our method by comparing to visual classifications of high-quality imaging data from the Millennium Galaxy Catalogue. The inclination correction is crucial to unveiling the previously unrecognized Intermediate class. Intermediate-type galaxies, roughly corresponding to lenticulars and early spirals, lie on the red sequence. The red sequence is therefore composed of two distinct morphological types, suggesting that there are two distinct mechanisms for transiting to the red sequence. We propose that Intermediate-type galaxies are those that have lost their cold gas via strangulation, while Early-type galaxies are those that have experienced a major merger that either consumed their cold gas, or whose merger progenitors were already devoid of cold gas (the ``dry merger'' scenario).Comment: Accepted for publication in ApJ. 7 pages in emulateap

    From Supermassive Black Holes to Dwarf Elliptical Nuclei: a Mass Continuum

    Full text link
    Considerable evidence suggests that supermassive black holes reside at the centers of massive galactic bulges. At a lower galactic mass range, many dwarf galaxies contain extremely compact nuclei that structurally resemble massive globular clusters. We show that both these types of central massive objects (CMO's) define a single unbroken relation between CMO mass and the luminosity of their host galaxy spheroid. Equivalently, M_CMO is directly proportional to the host spheroid mass over 4 orders of magnitude. We note that this result has been simultaneously and independently identified by Cote et al. (2006), see also Ferrarese et al. (2006). We therefore suggest that the dE,N nuclei may be the low-mass analogs of supermassive black holes, and that these two types of CMO's may have both developed starting from similar initial formation processes. The overlap mass interval between the two types of CMO's is small, and suggests that for M_CMO > 10^7 M_sun, the formation of a black hole was strongly favored, perhaps because the initial gas infall to the center was too rapid and violent for star formation to occur efficiently.Comment: 4 pages, 2 figures, submitted to ApJ

    Globular Clusters and X-ray Point Sources in Centaurus A (NGC 5128)

    Full text link
    We detect 353 X-ray point sources, mostly low-mass X-ray binaries (LMXBs), in four Chandra observations of Centaurus A (NGC 5128), the nearest giant early-type galaxy, and correlate this point source population with the largest available ensemble of confirmed and likely globular clusters associated with this galaxy. Of the X-ray sources, 31 are coincident with 30 globular clusters that are confirmed members of the galaxy by radial velocity measurement (2 X-ray sources match one globular cluster within our search radius), while 1 X-ray source coincides with a globular cluster resolved by HST images. Another 36 X-ray point sources match probable, but spectroscopically unconfirmed, globular cluster candidates. The color distribution of globular clusters and cluster candidates in Cen A is bimodal, and the probability that a red, metal rich GC candidate contains an LMXB is at least 1.7 times that of a blue, metal poor one. If we consider only spectroscopically confirmed GCs, this ratio increases to ~3. We find that LMXBs appear preferentially in more luminous (massive) GCs. These two effects are independent, and the latter is likely a consequence of enhanced dynamical encounter rates in more massive clusters which have on average denser cores. The X-ray luminosity functions of the LMXBs found in GCs and of those that are unmatched with GCs reveal similar underlying populations, though there is some indication that fewer X-ray faint LMXBs are found in globular clusters than X-ray bright ones. Our results agree with previous observations of the connection of GCs and LMXBs in early-type galaxies and extend previous work on Centaurus A.Comment: 34 pages, 10 figures, 2 tables, Accepted for Publication in The Astrophysical Journa

    Assignment of the vibrations of the S0, S1, and D+0 states of perhydrogenated and perdeuterated isotopologues of chlorobenzene

    Get PDF
    We report vibrationally resolved spectra of the S1 ← S0 transition of chlorobenzene using resonance-enhanced multiphoton ionization spectroscopy. We study chlorobenzene-h5 as well as its perdeuterated isotopologue, chlorobenzene-d5. Changes in the form of the vibrational modes between the isotopologues and also between the S0 and S1 electronic states are discussed for each species. Vibrational bands are assigned utilizing quantum chemical calculations, previous experimental results, and isotopic shifts, including those between the 35Cl and 37Cl isotopologues. Previous work and assignments of the S1 spectra are discussed. Additionally, the vibrations in the ground state cation, D+0, are considered, since these have also been used by previous workers in assigning the excited neutral state spectra

    Structural Parameters of the M87 Globular Clusters

    Get PDF
    We derive structural parameters for ~2000 globular clusters in the giant Virgo elliptical M87 using extremely deep Hubble Space Telescope images in F606W (V) and F814W (I) taken with the ACS/WFC. The cluster scale sizes (half-light radii r_h) and ellipticities are determined from PSF-convolved King-model profile fitting. We find that the r_h distribution closely resembles the inner Milky Way clusters, peaking at r_h~2.5 pc and with virtually no clusters more compact than r_h ~ 1 pc. The metal-poor clusters have on average an r_h 24% larger than the metal-rich ones. The cluster scale size shows a gradual and noticeable increase with galactocentric distance. Clusters are very slightly larger in the bluer waveband V a possible hint that we may be beginning to see the effects of mass segregation within the clusters. We also derived a color magnitude diagram for the M87 globular cluster system which show a striking bimodal distribution.Comment: ApJ accepte

    The Discovery of Cometary Activity in Near-Earth Asteroid (3552) Don Quixote

    Get PDF
    The near-Earth object (NEO) population, which mainly consists of fragments from collisions between asteroids in the main asteroid belt, is thought to include contributions from short-period comets as well. One of the most promising NEO candidates for a cometary origin is near-Earth asteroid (3552) Don Quixote, which has never been reported to show activity. Here we present the discovery of cometary activity in Don Quixote based on thermal-infrared observations made with the Spitzer Space Telescope in its 3.6 and 4.5 {\mu}m bands. Our observations clearly show the presence of a coma and a tail in the 4.5 {\mu}m but not in the 3.6 {\mu}m band, which is consistent with molecular band emission from CO2. Thermal modeling of the combined photometric data on Don Quixote reveals a diameter of 18.4 (-0.4/+0.3) km and an albedo of 0.03 (-0.01/+0.02), which confirms Don Quixote to be the third-largest known NEO. We derive an upper limit on the dust production rate of 1.9 kg s^-1 and derive a CO2 gas production rate of (1.1+-0.1)10^26 molecules s^-1. Spitzer IRS spectroscopic observations indicate the presence of fine-grained silicates, perhaps pyroxene rich, on the surface of Don Quixote. Our discovery suggests that CO2 can be present in near-Earth space over a long time. The presence of CO2 might also explain that Don Quixote's cometary nature remained hidden for nearly three decades.Comment: 40 pages, 8 figures, accepted by Ap

    Photometry and the Metallicity Distribution of the Outer Halo of M31

    Get PDF
    We have conducted a wide-field CCD-mosaic study of the resolved red-giant branch (RGB) stars of M31, in a field located 20 kpc from the nucleus along the SE minor axis. In our (I, V-I) color-magnitude diagram, RGB stars in the top three magnitudes of the M31 halo are strongly present. Photometry of a more distant control field to subtract field contamination is used to derive the `cleaned' luminosity function and metallicity distribution function (MDF) of the M31 halo field. From the color distribution of the foreground Milky Way halo stars, we find a reddening E(V-I)= 0.10 +/- 0.02 for this field, and from the luminosity of the RGB tip, we determine a distance modulus (m-M)_o = 24.47 +/- 0.12 (= 783 +/- 43 kpc). The MDF is derived from interpolation within an extensive new grid of RGB models (Vandenberg et al. 2000). The MDF is dominated by a moderately high-metallicity population ([m/H]~ -0.5) found previously in more interior M31 halo/bulge fields, and is much more metal-rich than the [m/H]~ -1.5 level in the Milky Way halo. A significant (~30% - 40%, depending on AGB star contribution) metal-poor population is also present. To first order, the shape of the MDF resembles that predicted by a simple, single-component model of chemical evolution starting from primordial gas with an effective yield y=0.0055. It strongly resembles the MDF recently found for the outer halo of the giant elliptical NGC 5128 (Harris et al. 2000), though NGC 5128 has an even lower fraction of low-metallicity stars. Intriguingly, in both NGC 5128 and M31, the metallicity distribution of the globular clusters in M31 does not match the halo stars; the clusters are far more heavily weighted to metal-poor objects. We suggest similarities in the formation and early evolution of massive, spheroidal stellar systems.Comment: to appear in the Astronomical Journal; 43 pages, including 15 figure

    Which comorbid conditions should we be analyzing as risk factors for healthcare-associated infections?

    Get PDF
    OBJECTIVETo determine which comorbid conditions are considered causally related to central-line associated bloodstream infection (CLABSI) and surgical-site infection (SSI) based on expert consensus.DESIGNUsing the Delphi method, we administered an iterative, 2-round survey to 9 infectious disease and infection control experts from the United States.METHODSBased on our selection of components from the Charlson and Elixhauser comorbidity indices, 35 different comorbid conditions were rated from 1 (not at all related) to 5 (strongly related) by each expert separately for CLABSI and SSI, based on perceived relatedness to the outcome. To assign expert consensus on causal relatedness for each comorbid condition, all 3 of the following criteria had to be met at the end of the second round: (1) a majority (&gt;50%) of experts rating the condition at 3 (somewhat related) or higher, (2) interquartile range (IQR)≤1, and (3) standard deviation (SD)≤1.RESULTSFrom round 1 to round 2, the IQR and SD, respectively, decreased for ratings of 21 of 35 (60%) and 33 of 35 (94%) comorbid conditions for CLABSI, and for 17 of 35 (49%) and 32 of 35 (91%) comorbid conditions for SSI, suggesting improvement in consensus among this group of experts. At the end of round 2, 13 of 35 (37%) and 17 of 35 (49%) comorbid conditions were perceived as causally related to CLABSI and SSI, respectively.CONCLUSIONSOur results have produced a list of comorbid conditions that should be analyzed as risk factors for and further explored for risk adjustment of CLABSI and SSI.Infect Control Hosp Epidemiol 2017;38:449–454</jats:sec
    corecore