46 research outputs found

    The Effects of Surfactants on Colloidal, Nanoparticulate, and Dissolved Sulfur

    Get PDF
    poster abstractElemental sulfur is generally insoluble in water unless in the presence of a surfactant. This phenomenon was investigated by Steudel and Holdt in 1988 by filtering mixtures of sulfur, water, and surfactants through a 0.45 micron filter; however, since then sulfur nanoparticles smaller than 0.45 microns have been detected. The smaller than expected particle size suggests that the distribution of elemental sulfur in water with surfactants may be partitioned into colloidal, nanoparticulate, and truly dissolved components. Experiments have been conducted measuring the sulfur solubility in water with several chemical surfactants and varying filter sizes smaller than 0.45 microns. These experiments were conducted under equilibrium conditions with the solubility being measured using HPLC and square wave voltammetry. Kinetic studies detailing the solubility of sulfur with the surfactants over time have also been investigated. Data regarding the size and occurrence of sulfur nanoparticles present in water and the surfactants has been collected as well to give a complete description of the system under examination. Sulfur isotope fractionation of the dissolved sulfur species is also an interesting component of the system that is currently being investigated using stable isotope ratio mass spectrometry of 34S

    A comprehensive sulfur and oxygen isotope study of sulfur cycling in a shallow, hyper-euxinic meromictic lake

    Get PDF
    Mahoney Lake is a permanently anoxic and sulfidic (euxinic) lake that has a dense plate of purple sulfur bacteria positioned at mid-water depth (∼7 m) where free sulfide intercepts the photic zone. We analyzed the isotopic composition of sulfate (δ34SSO4 and δ18OSO4), sulfide (δ34SH2S), and the water (δ18OH2O) to track the potentially coupled processes of dissimilatory sulfate reduction and phototrophic sulfide oxidation within an aquatic environment with extremely high sulfide concentrations (>30 mM). Large isotopic offsets observed between sulfate and sulfide within the monimolimnion (δ34SSO4-H2S = 51‰) and within pore waters along the oxic margin (δ34SSO4-H2S > 50‰) are consistent with sulfate reduction in both the sediments and the anoxic water column. Given the high sulfide concentrations of the lake, sulfur disproportionation is likely inoperable or limited to a very narrow zone in the chemocline, and therefore the large instantaneous fractionations are best explained by the microbial process of sulfate reduction. Pyrite extracted from the sediments reflects the isotopic composition of water column sulfide, suggesting that pyrite buried in the euxinic depocenter of the lake formed in the water column. The offset between sulfate and dissolved sulfide decreases at the chemocline (δ34SSO4-H2S = 37‰), a trend possibly explained by elevated sulfate reduction rates and inconsistent with appreciable disproportionation within this interval. Water column sulfate exhibits a linear response in δ18OSO4–δ34SSO4 and the slope of this relationship suggests relatively high sulfate reduction rates that appear to respond to seasonal changes in the productivity of purple sulfur bacteria. Although photosynthetic activity within the microbial plate influences the δ18OSO4–δ34SSO4 relationship, the biosignature for photosynthetic sulfur bacteria is restricted to the oxic/anoxic transition zone and is apparently minor relative to the more prevalent process of sulfate reduction operative throughout the light-deprived deeper anoxic water column and sediment pore waters

    Abiotic processes are insufficient for fertile island development: A ten‐year artificial shrub experiment in a desert grassland

    Get PDF
    The relative importance of biotic and abiotic processes in the development of “fertile islands” in dryland systems has rarely been investigated. Here we approached this question by using artificial shrubs, which exclude plant litter production and soil nutrient uptake, but retain the functions of trapping windblown material, funneling of stemflow, and differential rain splash. We conducted a vegetation manipulation study more than a decade ago in the desert grassland of southern New Mexico and subsequently revisited the site in 2012 and 2015. The results show that no notable soil mounds were observed under the artificial shrubs; however, soil texture under the artificial shrubs has gradually changed to resemble the patterns of soil particle-size distribution under natural shrubs. Our results highlight that with the exclusion of direct biotic additions, soils captured by shrub canopies are not necessarily fertile and thus do not themselves contribute to the development of fertile islands

    Nitrogen preference across generations under changing ammonium nitrate ratios

    Get PDF
    Aims Nitrogen (N) in natural environments is typically supplied by a mixture of ammonia (NH4+) and nitrate (NO3−). However, factors that underlie either NH4+ or NO3− preference, and how such preference will change across generations remain unclear. We conducted a series of experiments to answer whether: (i) NH4+:NO3− ratio is the driving factor for plant N preference, and (ii) this preference is consistent across generations. Methods We conducted both: (i) field observations (as a proxy for parent or P generation) and (ii) greenhouse experiments (the first generation or F1 and the second generation or F2) using corn and soybean grown under different NH4+:NO3− ratios. Important Findings Both corn and soybean had the physiological plasticity to prefer either NH4+ or NO3− depending on NH4+:NO3− ratios, and this plasticity was consistent across generations. Corn, however, showed a stronger preference towards NO3− while soybean showed a stronger preference towards NH4+. While both plants would try to make use of the most available form of N in their growing medium, plant species, physiological characteristics (e.g. maturity) and plant nutrient status also determined the extent of N uptake. From the evolutionary and productivity perspective, this plasticity is beneficial, allowing plants to effectively acquire available N particularly in a changing climate

    The use of dithiothreitol for the quantitative analysis of elemental sulfur concentrations and isotopes in environmental samples

    Get PDF
    Determining the concentration and isotopic composition of elemental sulfur in modern and ancient environments is essential to improved interpretation of the mechanisms and pathways of sulfur utilization in biogeochemical cycles. Elemental sulfur can be extracted from sediment or water samples and quantified by converting to hydrogen sulfide. Alternatively, elemental sulfur concentrations can themselves be analyzed using HPLC and other methodologies; however, the preparation and analysis times can be long and these methods are not amenable to stable isotopic analysis. Current reduction methods involve the use of costly and specialized glassware in addition to toxins such as chromium chloride or cyanide to reduce the sulfur to hydrogen sulfide. The novel reduction method presented here uses dithiothreitol (DTT) as a less toxic reducing agent to obtain both elemental sulfur concentrations and isotopic composition from the same sample. The sample is dissolved in an aqueous or organic liquid medium and upon reaction with DTT, the elemental sulfur is volatilized as hydrogen sulfide and collected in a sulfide trap using an inexpensive gas extraction apparatus. The evolved sulfide concentrations can easily be measured for concentration, by absorbance spectrophotometery or voltammetry techniques, and then analyzed for sulfur isotopic composition. The procedure is quantitative at >93% recovery to dissolved elemental sulfur with no observed sulfur isotope fractionation during reduction and recovery. Controlled experiments also demonstrate that DTT is not reactive to sulfate, sulfite, pyrite, or organic sulfur

    Midcontinental Native American population dynamics and late Holocene hydroclimate extremes

    Get PDF
    Climate’s influence on late Pre-Columbian (pre-1492 CE), maize-dependent Native American populations in the midcontinental United States (US) is poorly understood as regional paleoclimate records are sparse and/or provide conflicting perspectives. Here, we reconstruct regional changes in precipitation source and seasonality and local changes in warm-season duration and rainstorm events related to the Pacific North American pattern (PNA) using a 2100-year-long multi-proxy lake-sediment record from the midcontinental US. Wet midcontinental climate reflecting negative PNA-like conditions occurred during the Medieval Climate Anomaly (950–1250 CE) as Native American populations adopted intensive maize agriculture, facilitating population aggregation and the development of urban centers between 1000–1200 CE. Intensifying midcontinental socio-political instability and warfare between 1250–1350 CE corresponded with drier positive PNA-like conditions, culminating in the staggered abandonment of many major Native American river valley settlements and large urban centers between 1350–1450 CE during an especially severe warm-season drought. We hypothesize that this sustained drought interval rendered it difficult to support dense populations and large urban centers in the midcontinental US by destabilizing regional agricultural systems, thereby contributing to the host of socio-political factors that led to population reorganization and migration in the midcontinent and neighboring regions shortly before European contact

    Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan

    Get PDF
    Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP) Expedition 337, we measured potential sulfate reduction rates by slurry incubations with 35S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75 meters below the seafloor. Potential sulfate reduction rates were generally extremely low (mostly below 0.1 pmol cm−3 d−1) but showed elevated values (up to 1.8 pmol cm−3 d−1) in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the coal-bearing horizons coincided with this local increase in potential sulfate reduction rates. This paired enzymatic response suggests that hydrogen is a potentially important electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no stimulation of sulfate reduction rates was observed in treatments where methane was added as an electron donor. In the deep coalbeds, small amounts of sulfate might be provided by a cryptic sulfur cycle. The isotopically very heavy pyrites (δ34S = +43‰) found in this horizon is consistent with its formation via microbial sulfate reduction that has been continuously utilizing a small, increasingly 34S-enriched sulfate reservoir over geologic time scales. Although our results do not represent in-situ activity, and the sulfate reducers might only have persisted in a dormant, spore-like state, our findings show that organisms capable of sulfate reduction have survived in deep methanogenic sediments over more than 20 Ma. This highlights the ability of sulfate-reducers to persist over geological timespans even in sulfate-depleted environments. Our study moreover represents the deepest evidence of a potential for sulfate reduction in marine sediments to date

    Female Blow Flies As Vertebrate Resource Indicators

    Get PDF
    Rapid vertebrate diversity evaluation is invaluable for monitoring changing ecosystems worldwide. Wild blow flies naturally recover DNA and chemical signatures from animal carcasses and feces. We demonstrate the power of blow flies as biodiversity monitors through sampling of flies in three environments with varying human influences: Indianapolis, IN and two national parks (the Great Smoky Mountains and Yellowstone). Dissected fly guts underwent vertebrate DNA sequencing (12S and 16S rRNA genes) and fecal metabolite screening. Integrated Nested Laplace Approximation (INLA) was used to determine the most important abiotic factor influencing fly-derived vertebrate richness. In 720 min total sampling time, 28 vertebrate species were identified, with 42% of flies containing vertebrate resources: 23% DNA, 5% feces, and 14% contained both. The species of blow fly used was not important for vertebrate DNA recovery, however the use of female flies versus male flies directly influenced DNA detection. Temperature was statistically relevant across environments in maximizing vertebrate detection (mean = 0.098, sd = 0.048). This method will empower ecologists to test vertebrate community ecology theories previously out of reach due practical challenges associated with traditional sampling

    Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece

    Get PDF
    Shallow-sea (5 m depth) hydrothermal venting off Milos Island provides an ideal opportunity to target transitions between igneous abiogenic sulfide inputs and biogenic sulfide production during microbial sulfate reduction. Seafloor vent features include large (>1 m2) white patches containing hydrothermal minerals (elemental sulfur and orange/yellow patches of arsenic-sulfides) and cells of sulfur oxidizing and reducing microorganisms. Sulfide-sensitive film deployed in the vent and non-vent sediments captured strong geochemical spatial patterns that varied from advective to diffusive sulfide transport from the subsurface. Despite clear visual evidence for the close association of vent organisms and hydrothermalism, the sulfur and oxygen isotope composition of pore fluids did not permit delineation of a biotic signal separate from an abiotic signal. Hydrogen sulfide (H2S) in the free gas had uniform δ34S values (2.5 ± 0.28‰, n = 4) that were nearly identical to pore water H2S (2.7 ± 0.36‰, n = 21). In pore water sulfate, there were no paired increases in δ34SSO4 and δ18OSO4 as expected of microbial sulfate reduction. Instead, pore water δ34SSO4 values decreased (from approximately 21‰ to 17‰) as temperature increased (up to 97.4°C) across each hydrothermal feature. We interpret the inverse relationship between temperature and δ34SSO4 as a mixing process between oxic seawater and 34S-depleted hydrothermal inputs that are oxidized during seawater entrainment. An isotope mass balance model suggests secondary sulfate from sulfide oxidation provides at least 15% of the bulk sulfate pool. Coincident with this trend in δ34SSO4, the oxygen isotope composition of sulfate tended to be 18O-enriched in low pH (75°C) pore waters. The shift toward high δ18OSO4 is consistent with equilibrium isotope exchange under acidic and high temperature conditions. The source of H2S contained in hydrothermal fluids could not be determined with the present dataset; however, the end-member δ34S value of H2S discharged to the seafloor is consistent with equilibrium isotope exchange with subsurface anhydrite veins at a temperature of ~300°C. Any biological sulfur cycling within these hydrothermal systems is masked by abiotic chemical reactions driven by mixing between low-sulfate, H2S-rich hydrothermal fluids and oxic, sulfate-rich seawater

    Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep

    Get PDF
    Crusts and chimneys composed of authigenic barite are found at methane seeps and hydrothermal vents that expel fluids rich in barium. Microbial processes have not previously been associated with barite precipitation in marine cold seep settings. Here, we report on the precipitation of barite on filaments of sulfide-oxidizing bacteria at a brine seep in the Gulf of Mexico. Barite-mineralized bacterial filaments in the interiors of authigenic barite crusts resemble filamentous sulfide-oxidizing bacteria of the genus Beggiatoa. Clone library and iTag amplicon sequencing of the 16S rRNA gene show that the barite crusts that host these filaments also preserve DNA of Candidatus Maribeggiatoa, as well as sulfate-reducing bacteria. Isotopic analyses show that the sulfur and oxygen isotope compositions of barite have lower δ34S and δ18O values than many other marine barite crusts, which is consistent with barite precipitation in an environment in which sulfide oxidation was occurring. Laboratory experiments employing isolates of sulfide-oxidizing bacteria from Gulf of Mexico seep sediments showed that under low sulfate conditions, such as those encountered in brine fluids, sulfate generated by sulfide-oxidizing bacteria fosters rapid barite precipitation localized on cell biomass, leading to the encrustation of bacteria in a manner reminiscent of our observations of barite-mineralized Beggiatoa in the Gulf of Mexico. The precipitation of barite directly on filaments of sulfide-oxidizing bacteria, and not on other benthic substrates, suggests that sulfide oxidation plays a role in barite formation at certain marine brine seeps where sulfide is oxidized to sulfate in contact with barium-rich fluids, either prior to, or during, the mixing of those fluids with sulfate-containing seawater in the vicinity of the sediment/water interface. As with many other geochemical interfaces that foster mineral precipitation, both biological and abiological processes likely contribute to the precipitation of barite at marine brine seeps such as the one studied here
    corecore