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Barite encrustation of benthic sulfur-oxidizing 1 

bacteria at a marine cold seep2
3
4

ABSTRACT 5 

  Crusts and chimneys composed of authigenic barite are found at methane seeps and 6 

hydrothermal vents that expel fluids rich in barium. Microbial processes have not 7 

previously been associated with barite precipitation in marine cold seep settings. Here we 8 

report on the precipitation of barite on filaments of sulfide-oxidizing bacteria at a brine 9 

seep in the Gulf of Mexico. Barite-mineralized bacterial filaments in the interiors of 10 

authigenic barite crusts resemble filamentous sulfide-oxidizing bacteria of the genus 11 

Beggiatoa. Clone library and iTag amplicon sequencing of the 16S rRNA gene show that 12 

the barite crusts that host these filaments also preserve DNA of Candidatus 13 

Maribeggiatoa, as well as sulfate-reducing bacteria. Isotopic analyses show that the sulfur 14 

and oxygen isotope compositions of barite have lower δ34S and δ18O values than many 15 

other marine barite crusts, which is consistent with barite precipitation in an environment 16 

in which sulfide oxidation was occurring. Laboratory experiments employing isolates of 17 

sulfide-oxidizing bacteria from Gulf of Mexico seep sediments showed that under low 18 

sulfate conditions, such as those encountered in brine fluids, sulfate generated by sulfide-19 

oxidizing bacteria fosters rapid barite precipitation localized on cell biomass, leading to 20 

the encrustation of bacteria in a manner reminiscent of our observations of barite-21 

mineralized Beggiatoa in the Gulf of Mexico. The precipitation of barite directly on 22 

filaments of sulfide-oxidizing bacteria, and not on other benthic substrates, suggests that 23 

sulfide oxidation plays a role in barite formation at certain marine brine seeps where 24 

sulfide is oxidized to sulfate in contact with barium-rich fluids, either prior to, or during, 25 



the mixing of those fluids with sulfate-containing seawater in the vicinity of the 26 

sediment/water interface. As with many other geochemical interfaces that foster mineral 27 

precipitation, both biological and abiological processes likely contribute to the 28 

precipitation of barite at marine brine seeps such as the one studied here. 29 

 30 

INTRODUCTION 31 

  The mineral barite (BaSO4) is found in diverse depositional environments and is 32 

associated with a variety of different geologic processes and pressure-temperature 33 

conditions (e.g., Goldberg et al., 1969; Griffith & Paytan, 2012; Eickmann et al., 2014). 34 

Natural waters are typically undersaturated with respect to barite (Chow & Goldberg, 35 

1960;  Church & Wolgemuth, 1972; Monnin et al., 1999; Griffith & Rushdi et al., 2000; 36 

Paytan, 2012), and authigenic barite precipitation occurs when fluids enriched in barium 37 

(Ba2+) encounter those containing sulfate (SO4
-2) (Ritger et al., 1987;  Torres et al., 1996; 38 

Greinert et al., 2002; Aloisi et al., 2004), according to Equation 1. 39 

 40 

Ba2+ + SO4
2- <=> BaSO4     Equation (1) 41 

  The precipitation of authigenic barite occurs in a variety of depositional settings, 42 

including springs, hydrothermal vents and cold seeps (Aquilina et al., 1997;  Arenas et 43 

al., 2000;  Greinert et al., 2002; Torres et al., 2003; Eickmann et al., 2014).  In marine 44 

systems, precipitation occurs at the seafloor and within the sediment column (Torres et 45 

al., 1996; Aquilina et al., 1997;  Hanor, 2000;  Greinert et al., 2002; Aloisi et al., 2004; 46 

Riedinger et al., 2006; Feng & Roberts, 2011; Griffith & Paytan, 2012). Diffuse 47 

precipitates also form in the water column in association with decaying organic matter 48 



(Bertram & James, 1997;  Stroobants et al., 1991;  Dymond et al., 1992;  Dehairs et al., 49 

1991;  Dehairs et al., 1980;  Gonzalez-Muñoz et al., 2012;  Goldberg & Arrhenius, 1958;  50 

Bishop, 1988). As an authigenic mineral that reflects the environment of precipitation, 51 

barite from diverse depositional environments provides robust paleoenvironmental 52 

indicators. For example, geochemical analysis of sedimentary barite offers insight 53 

regarding past patterns of marine primary productivity (e.g., Bishop, 1988;  Dehairs et al., 54 

1991;  Dymond et al., 1992;  Gingele & Dahmke, 1994;  Paytan et al., 1996); seawater 55 

strontium  (e.g., Paytan et al., 1993); redox zone migration (Contreras et al., 2013); and 56 

the sulfur isotope composition of marine sulfate from the Cenozoic (e.g., Paytan et al., 57 

1998) to the Archean (e.g., Shen et al., 2001).  58 

  Although barite is thought to form primarily through the abiotic mixing of barium and 59 

sulfate-enriched fluids (Hanor, 2000), a number of studies suggest that, under certain 60 

conditions, microbial processes play a role in the precipitation of barite (e.g., Bertram & 61 

James, 1997; Rasmussen, 2000; Gonzalez-Munoz, 2003; Senko et al., 2004; Bonny & 62 

Jones, 2007a; Bonny & Jones, 2007b; Bonny & Jones, 2008b; Sanz-Montero et al., 2009; 63 

Gonzalez-Muñoz et al., 2012; Griffith & Paytan, 2012).  Specific mechanism(s) by which 64 

microorganisms mediate barite precipitation vary and are incompletely understood. 65 

Potential mechanisms include passive or active biological enrichment of barium (e.g., 66 

Goldberg & Arrhenius, 1958;  Bishop, 1988b;  Ganeshram et al., 2003; Bonny & Jones, 67 

2008b), the generation of sulfate via sulfide-oxidation (Spirakis, 1991; Senko et al., 2004; 68 

Bonny & Jones, 2008a), and cellular surfaces acting as nucleation sites for crystal 69 

precipitation (e.g., Gonzalez-Munoz, 2003; Gonzalez-Muñoz et al., 2012).  70 



  Sulfate produced during lithotrophic sulfide oxidation is generally only thought to 71 

contribute to barite precipitation in sulfate-depleted settings such as terrestrial springs 72 

(Bonny & Jones, 2008a). Sulfide oxidation in the marine environment has not previously 73 

been associated with barite precipitation because of the ubiquity of dissolved sulfate (28 74 

mM) in seawater. In contrast to those of terrestrial springs, marine authigenic barites 75 

have, in fact, been noted for their paucity of “biological textures” (Bonny & Jones, 76 

2008b). The canonical view is that barite precipitating at marine cold seeps is driven 77 

exclusively by the abiotic mixing of barium-rich, sulfate-free fluids with seawater rich in 78 

sulfate (Fu et al., 1994; Torres et. al. 1996; Aquilina et al., 1997; Castellini et al., 2006; 79 

Roberts et al., 2010). However, the relative contribution of sulfate produced during 80 

sulfide oxidation may become significant in certain marine pore waters where microbial 81 

sulfate reduction consumes dissolved sulfate and barite is remobilized by reductive 82 

dissolution (Fritz et al., 1989;  Greinert et al., 2002;  Torres et al., 2003), or where the 83 

active precipitation of authigenic barite can temporarily deplete local sulfate supply 84 

(Feng & Roberts, 2011). Additionally, some subsurface fluids, including those that are 85 

enriched in barium, lack sulfate (Joye et al., 2009).  In sulfate-free marine settings such as 86 

these, lithotrophic sulfide oxidation could drive precipitation of authigenic barite, though 87 

specific evidence for this process has not, to our knowledge, been presented.  88 

  The seepage of hypersaline fluids from subsurface reservoirs can lead to the formation 89 

of pools containing high-density fluids on the seafloor. Brine pools are known from the 90 

Red Sea, the Black Sea, the Mediterranean and the Gulf of Mexico (Addy & Behrens, 91 

1980; Eder et al., 1999;  van der Wielen et al., 2005; Daffonchio et al., 2006). Brine 92 

fluids are rich in dissolved organic carbon that may stimulate dissimilatory sulfate 93 



reduction, generating sulfide that supports the growth of sulfide-oxidizing bacteria and 94 

sustains the establishment of animal communities that depend on chemoautotrophic 95 

microbial symbionts (MacDonald et al., 1990;  Greinert et al., 2002;  Orcutt et al., 2005).  96 

Certain brine seepage and mud volcano sites in the Gulf of Mexico also hosts extensive 97 

authigenic barite deposits that occur where barium-rich, sulfate-free brine fluids 98 

encounter seawater sulfate (Fu et al., 1994; Castellini et al., 2006; Roberts et al., 2010).  99 

During exploration of one of these brine pools in the Gulf of Mexico, we discovered 100 

barite crusts that contain dense networks of barite-mineralized filaments internally. The 101 

mineral filaments resemble Beggiotoa, a filamentous sulfide-oxidizing bacterium that is 102 

extremely abundant in the microbial mats at this site. Putative Beggiatoa-like 103 

microorganisms have been shown previously to be preserved as fossils in ancient 104 

phosphorites and methane seep carbonates (Cavagna et al., 1999;  Peckmann et al., 2004; 105 

Barbieri & Cavalazzi, 2005;  Bojanowski, 2007; Bailey et al., 2013), but have not been 106 

identified previously in barite. Here we report on the results of imaging, mineralogical 107 

characterization, and sequencing of relict DNA recovered from within the barite-108 

mineralized filaments. We complemented these analyses with laboratory experiments and 109 

isotopic analyses to further resolve the role of bacterial sulfide oxidation in the 110 

precipitation of the filament-hosting barite mineral crusts. 111 

 112 

MATERIALS AND METHODS 113 

Sample Localities 114 

  Green Canyon Block 246 (GC246) is located on the upper mid-continental slope of the 115 

Gulf of Mexico, approximately 200 km southwest of the Mississippi River Delta. This 116 



region has a complex geology influenced by extensive sedimentation, sea-level changes 117 

and salt tectonics that create geochemical conditions, conduits, and topography that allow 118 

for the formation of mud volcanoes and brine seepage features (Joye, 2005; Roberts et 119 

al., 2010). Dead Crab Lake is a shallow brine pool approximately 15 m wide and 15-20 120 

cm deep, located at a water depth of 867 m (27º42.1985’N, 90º39.0112’W). Barite crusts 121 

and chimneys, as well as extensive orange and white-colored microbial mats that were 122 

visually dominated by dense Beggiatoa filaments, were encountered along the shoreline 123 

of Dead Crab Lake (Fig. 1A). Samples of the mineral crust and chimney structures were 124 

collected using the DSV Alvin during dives 4651, 4652 & 4656 (November, 2010) on a 125 

research cruise on the R/V Atlantis (Cruise AT 18-02).    126 

 127 

Observations and Sample Characterization 128 

  Initial observations and images of the barite mineral crusts and chimney samples were 129 

made using an Olympus SZX16 stereomicroscope on board the R/V Atlantis immediately 130 

after sample collection. Samples were split for microscopy and molecular biology using 131 

sterilized tools, with the latter sample splits being frozen immediately at -80°C. Mineral 132 

crust samples were later imaged using a Hitachi T-1000 SEM scanning electron 133 

microscope operating at an acceleration voltage of 15 kV. Semi-quantitative element 134 

abundances were measured using energy-dispersive x-ray spectroscopy (EDS) running 135 

Bruker’s Quantax 50 software, with acquisition times of 90 seconds for EDS spectra. 136 

Bulk mineralogical analysis of the dried mineral crust was performed using a Rigaku 137 

Miniflex powder X-ray diffraction (XRD). The x-ray source was a Cu anode operated at 138 

30 kV and 15 mA using CuKα radiation. Scans were taken at 2º per minute and covered 139 



an angular region of 15º ≤ 2θ ≤65º. Mineral spectra were identified using the XRD 140 

analysis software JADE (Materials Data Incorporated, USA).  141 

 142 

DNA Recovery from Barite Filaments and 16S rRNA Gene Analysis 143 

Sample preparation and DNA extraction 144 

  In order to obtain mineral-hosted DNA that was free of contamination on external 145 

surfaces, barite crust samples containing mineralized filaments were washed prior to 146 

sample homogenization and DNA extraction. Washing followed a procedure similar to 147 

that used by Mason et al. (2015). For each wash step, samples were rinsed in syringe-148 

filtered 1x phosphate buffered saline (PBS), followed by sonication at 160 watts for 15 149 

seconds. Samples were then centrifuged for 5 minutes at 4000 × g. Supernatant was 150 

removed and fresh PBS added for a total of nine rinses. The third, sixth and ninth rinsate 151 

was collected and tested for the presence of amplifiable DNA via PCR using bacterial-152 

specific primers 27F and 1492R and the Beggiatoa-specific primer pair 341F and 153 

VSOXBr (See primer details in Table S2).   154 

  After 9 wash steps, no amplifiable DNA was detected in the rinsate. Following 155 

homogenization, DNA was then extracted from the barite crust (one 0.6 g sample) using 156 

the Powersoil DNA Isolation Kit (Mo Bio Laboratories, USA) following the 157 

manufacturer’s protocol, with two modifications. First, prior to bead beating, samples 158 

were incubated at 65°C for 5 minutes, vortexed briefly, and returned to 65°C for 5 159 

minutes. Second, bead beating was performed for 5, 8 and 10 minutes, followed by the 160 

pooling of supernatants, in order to reduce extraction biases based on cell type. 161 

 162 



iTag amplicon sequencing, data processing and analysis 163 

  An Illumina tag (iTag) amplicon library of the V3 hypervariable region of the 16S 164 

rRNA gene was generated using an approach similar to that of Bartram et al. (2011). The 165 

V3 region was amplified via polymerase chain reaction (PCR) using the Illumina-specific 166 

adaptor-primers of Bartram et al. (2011) modified to include a degenerate sequence of 4-167 

7 nucleotides (e.g., NNNN) between the adapter sequences and the primers to improve 168 

cluster identification during Illumina sequencing.  PCR reactions were performed using 169 

the HotStarTaq Plus enzyme (Qiagen, USA), with 5 minute initial denaturation at 95 ºC, 170 

25 cycles of denaturation (95 ºC, 1 minute), annealing (50 ºC, 1 minute), and elongation 171 

(72 ºC, 1 minute), and 7 minute final elongation (72 ºC). Gel electrophoresis was used to 172 

separate DNA products from primers and primer dimers using a 2% agarose gel. Bands 173 

were cut out and purified using the Zymoclean Gel DNA Recovery Kit (Zymo Research, 174 

Orange, CA). Itag amplicon libraries were sequenced via 150 cycles of paired-end 175 

Illumina MiSeq at the University of Minnesota Genomics Center (UMGC).   176 

 Raw sequences were quality trimmed and filtered using Fastq-MCF  (Aronesty, 2011) 177 

and reads with adaptor sequences removed using cutadapt (Martin, 2011). Forward and 178 

reverse sequences were assembled using PAired-eND Assembler (Masella et al., 2012). 179 

Chimeras were removed using UCHIME (Edgar et al., 2011). Sequence data was then 180 

processed using mothur (Schloss et al., 2009) within the Galaxy platform (Blankenberg et 181 

al., 2010;  Giardine et al., 2005), which was used to classify sequences according to 182 

SILVA taxonomic assignments (Quast et al., 2013).  Operational taxonomic units (OTUs) 183 

were defined at 97% similarity using default parameters. Rarefaction analyses of both the 184 

general 16S rRNA gene clone library and the 16S rRNA gene Illumina amplicon data sets 185 



were also performed using mothur (Schloss et al., 2009).  Amplicon sequences were 186 

deposited in the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under project 187 

ID PRJNA267505.   188 

 189 

Clone libraries 190 

  Two 16S rRNA gene clone libraries were generated. The first used the general bacterial 191 

primers 27F and 1492R (Table S2) to improve phylogenetic resolution of the dominant 192 

taxa. A second clone library was generated using the primer pair VSOXBr and 341f  193 

(Table S2) in order to target representatives of the Beggiatoaceae that are commonly 194 

missed by widely-used general primer sets (Kalanetra et al., 2005). Amplification using 195 

341F and VSOXBr required two consecutive PCRs using the same primer sets, an 196 

approach described in Salman et al. (2011). PCR reactions (25 μl) were incubated as 197 

follows: initial denaturation of 4 minutes at 95 ºC, 6 cycles of touchdown PCR consisting 198 

of 45 seconds of denaturation at 95 ºC, annealing for 45 seconds at temperatures of 59 ºC, 199 

57 ºC, 55 ºC, and elongation for 45 seconds at 72 ºC, followed by 24 cycles of PCR at an 200 

annealing 53 ºC for 45 seconds, with a final elongation step at 72 ºC for 7 minutes.  PCR 201 

products were then cloned using the Topo TA cloning kit (Invitrogen, USA). PCR 202 

products were cleaned using a DNA Clean and Concentrator -5 kit (Zymo Research, 203 

USA. Sanger sequencing was performed at the UMGC with a capillary ABI 3730xl 204 

sequencer and ABI BigDye Terminator version 3.1 chemistry (Applied Biosystems, 205 

USA). Partial sequences were assembled using Sequencher (Bromberg et al., 1995) with 206 

final sequence lengths of >1300 bp reads for the general bacterial library and >500 bp 207 



reads for the Beggiatoa specific library. Clone library sequences were archived under 208 

GenBank accession numbers KM396655-KM396693. 209 

 210 

Phylogenetic analysis 211 

  The 16S rRNA gene sequences from the general bacterial and Beggiatoa-specific clone 212 

libraries were aligned using the NAST aligner within the Greengenes web application 213 

(DeSantis et al., 2006). The sequences were then added to an ARB database of nearly 214 

480,000 representative bacterial sequences. Manual refinement was performed in ARB 215 

using the ARB_Edit4 sequence editor. Alignments were trimmed so that all sequences 216 

were of equal length, and nucleotide positions with less than 50% base-pair conservation 217 

were masked. The final alignment lengths were 1320 and 512 nucleotide positions for the 218 

general bacteria library and Beggiatoa specific library respectively. Neighbor joining 219 

analyses were performed in PAUP* version 4b10 (Swofford, 1999) with Jukes-Cantor 220 

(JC) corrected distance matrix and 2000 bootstrap replicates.  221 

 222 

Precipitation Experiments 223 

  To investigate the mechanisms by which sulfide-oxidizing bacteria might induce barite 224 

precipitation via the generation of sulfate in barium-rich solutions, experiments were 225 

conducted using five pure culture isolates. Two of these isolates, namely Thiomicrospira 226 

crunogena strain XCL-2 (Jannasch et al. 1985; Scott 2006) (ATCC = 35932; DSMZ = 227 

25203) and Sedimenticola thiotaurini strain SIP-G1 (Flood et al., 2015) (ATCC = BAA-228 

2640; DSMZ = 28581), were selected because they are known to oxidize sulfide and 229 

thiosulfate. S. thiotaurini SIP-G1 was isolated from Sippewissett Salt Marsh, MA. T. 230 



crunogena XCL-2 was originally isolated from hydrothermal sulfides of the East Pacific 231 

Rise (Jannasch et al., 1985).  We isolated three additional strains from sediment collected 232 

in the Gulf of Mexico (Site GC233) near the site of barite crust collection. These 233 

organisms were isolated on the experimental precipitation medium agar plates described 234 

below, with the addition of thiosulfate, but without the addition of barium. These strains 235 

were taxonomically characterized by amplification and analysis of 16S rRNA genes as 236 

described for the clone libraries.  The three strains are herein referred to as Halomonas 237 

sp., strain BM23 (KP336666), Maribacter sp. strain LM2 (KP336667) and Roseobacter 238 

sp. strain LH4 (KP336667). 239 

 240 

PCR amplification using soxB specific primers, soxB693F and soxB1446B (Petri et al., 241 

2001), was performed on all five isolates in order to assess the presence or absence of a 242 

Sox pathway, a pathway that diverse lithotrophs use to oxidize sulfur (Mukhopadhyaya et 243 

al., 2000;  Kappler & Dahl, 2001),. PCR analysis showed that Roseobacter sp. LH4, S. 244 

thiotaurini, and T. crunogena were positive for soxB. No soxB gene amplification was 245 

observed for Maribacter and Halomonas.  Halomonas sp. strain BM23 was chosen for 246 

inclusion in these experiments because previous work with related bacteria (Teske et al., 247 

2000) suggested that its sulfur metabolism generates tetrathionate (and perhaps sulfate), 248 

but at a slower rate than the other sulfur-oxidizing strains selected here. Maribacter sp. 249 

strain LM2, a organoheterotroph, was chosen as a control strain because it does not likely 250 

have the capability to oxidize thiosulfate, but grows on the same plates as the other 251 

bacteria probably via the degradation of trace organics or structural proteins within the 252 

agar.  253 



  Precipitation experiments and bacterial isolations were conducted using an agar base 254 

medium with the following composition: 430 mM NaCl, 6.0 mM MgCl2 6H20, 2.0 mM 255 

CaCl2, 3.3 mM NH4Cl, 3.1 mM K2HPO4, 10 mM Tris.Cl buffer, , 0.005% phenol red 256 

(w/v), 1x SL-8 trace metal solution (Biebl and Pfennig, 1978) and 1.5% technical grade 257 

agar (w/v) (BD Difco).  Plates used during precipitation experiments consisting of the 258 

base media supplemented with 2 mM BaCl2 and 10 mM Na2S2O3. Phenol red was used as 259 

a pH indicator and base media was adjusted to pH 7.92.  These plates were designed to 260 

promote thiosulfate oxidation coupled with autotrophic growth whereby NH4 and PO4 261 

serve as inorganic sources of N and P.   Although Tris Cl provides some initial buffering 262 

capacity to promote microbial growth, sufficient levels of acid or base production around 263 

a microbial colony turns the phenol red yellow for acid production and fushia for base 264 

production. Prior to initiation of precipitation experiments, all isolates were cultured in 265 

liquid Marine Broth 2216 (BD Difco) except for T. crunogena, which was cultured in 266 

liquid TMS media (Jannasch et al., 1985). All cultures were incubated for 72 hours at 25º 267 

± 1º prior to inoculation of the barite precipitation experiments. 268 

Aliquots (20 µl) of the liquid culture inocula were spread on the experimental plates. 269 

Petri dishes were stored benchtop at 25º ± 1º. S. thiotaurini was grown in a Coy hypoxic 270 

chamber (5% O2) due to its sensitivity to oxygen – a characteristic that it shares with 271 

some closely related sulfide-oxidizing gammaproteobacteria, including marine Beggiatoa 272 

strains. Experiments were monitored daily for cell growth, mineral precipitation, and 273 

changes in pH. Plates with 2mM BaCl2 and ~10 mM Na2S2O3, but without cell inocula, 274 

were used as cell-free control experiments. Additional controls were also performed 275 



using cells fixed in a 4% paraformaldehyde in seawater solution incubated at 4ºC for 3 276 

hours.  277 

 278 

Isotopic Analysis 279 

  The sulfur (δ34S) and oxygen (δ18O) isotopic compositions of barite powders drilled 280 

from barite crusts, barite-mineralized filaments and barite chimneys, were measured on a 281 

stable isotope ratio mass spectrometer (IRMS; Thermo Delta V Plus at IUPUI). Barites 282 

were weighed (0.4 mg) into tin capsules and mixed with vanadium pentoxide to promote 283 

complete combustion to SO2 in an elemental analyzer (Costech Analytical ECS 4010), 284 

which was coupled under continuous flow to the IRMS. A separate barite split (0.15 mg) 285 

was weighed into silver capsules and mixed with an equal mass of graphite. Sulfate-286 

oxygen was converted to CO by pyrolysis (Thermo TC/EA) and the sample gas was 287 

transferred by helium carrier gas to the IRMS for oxygen isotope analysis. Isotope values 288 

were reported in standard delta notation [δxE = (Rsample/Rstandard -1) x1000] for each 289 

isotope (xE = 34S or 18O) by normalizing the isotopic ratio (R = 34S/32S or 18O/16O) of the 290 

sample to the isotopic ratio of the international standard for sulfur, Vienna Canyon 291 

Diablo Troilite (VCDT), and Standard Mean Ocean Water (SMOW) for oxygen. Sulfur 292 

isotope values were calibrated against international reference materials NBS-127 (δ34S = 293 

21.1‰), IAEA-SO5 (δ34S = 0.49‰), and IAEA-SO6 (δ34S = -34.05‰). Oxygen isotope 294 

values were normalized to reference materials IAEA-SO6 (δ18O = -11.0‰), NBS-127 295 

(δ18O = 8.7‰), and IAEA-SO5 (δ18O = 12.0‰). Linear regression was used to correct 296 

unknowns to the international reference values and to account for scale compression. 297 

Analytical precision for δ34S and δ18O values of reference materials was ±0.2‰ (1σ). 298 



 299 

RESULTS  300 

Observations and mineralogical characterization of mineral filaments 301 

  A complex assemblage of mineral crusts, chimneys, brine flow channels, and microbial 302 

mats containing abundant Beggiatoa surround the Dead Crab Lake brine pool (Fig. 1A). 303 

Fist-sized samples of mineral crust and small cone-shaped chimney structures were 304 

collected using the DSV Alvin (Table S2). As with other barite crusts and chimneys from 305 

the Gulf of Mexico, the samples collected were relatively porous and friable. 306 

Examination of the freshly collected crust using a dissecting microscope revealed a dense 307 

network of mineral filaments in the interiors of several barite crust samples (Fig. 1B). 308 

Living unmineralized filamentous sulfur bacteria resembling Beggiatoa were observed on 309 

crust exteriors, but in much lower abundance than in the microbial mats from the 310 

sediments in the vicinity of the crusts. Examination of the crusts using scanning electron 311 

microscopy revealed fully mineralized filaments and some organic bacterial filaments 312 

that were partially coated or encrusted by barite (Fig. 1C-D). As these filaments 313 

accumulate precipitates, they appear to grow thicker (sometimes substantially thicker 314 

than the original cell) and the filamentous morphology grades into an amorphous mineral 315 

texture (Fig. 1, Fig. S1).  XRD analysis revealed that the mineral crusts and filament-316 

encrusting minerals are composed principally of barite (Fig. S2).   317 

 318 

Analysis of mineral-hosted DNA 319 

  DNA was extracted from the barite to determine whether the mineralized filaments 320 

preserved molecular signatures of Beggiatoa or other sulfide-oxidizing bacteria that may 321 



have influenced barite precipitation. iTag amplicon sequencing of the 16S rRNA gene 322 

provided a broad picture of the community DNA preserved within the mineral matrix of 323 

the filament-hosting barite crust, while clone libraries were used to obtain greater 324 

phylogenetic resolution of certain abundant taxa.   325 

  The Illumina MiSeq iTag amplicon library produced 102,664 sequences for the single 326 

filament-hosting barite crust sample. The most abundant sequences fell within the 327 

Proteobacteria, with gammaproteobacterial sequences comprising 37.7% of the sequences 328 

and alphaproteobacterial sequences comprising 16.2% (Figure 2). Of the 329 

gammaproteobacterial sequences, 20% fell within the Thiotrichales 1 , including 38 330 

sequences from within the family Beggiatoaceae. Of the alphaproteobacterial sequences, 331 

Roseobacter was the most abundant genus, comprising 38% of the sequences. The most 332 

abundant sequences within the Epsilonproteobacteria fell within the genera Sulfurovum, 333 

Sulfuricurvum, Sulfurospirillum, and Sulfurimonas comprising 58%, 18%, 16%, and 334 

4.6% of the epsilonproteobacterial sequences respectively. Molecular signatures of 335 

sulfate-reducing bacteria were also present within the crust. Of the deltaproteobacterial 336 

sequences 32%, 26%, and 5% were of the order Desulfobacterales, Desulfuromonadales, 337 

and Desulfovibrionales respectively.  338 

  Thirty-eight nearly full-length 16S rRNA gene sequences were generated from the 339 

bacterial clone library of the same sample used to generate the amplicon library, here 340 

using the primer set 27F and 1492R (Table S2). A neighbor-joining tree shows 341 

                                                 
1 The “Thiotricales” is a polyphyletic assemblage of mutually distinct families including 
the Beggiatoaceae (Salman et al., 2011). Here we refer to the Thiotricales for the 
purposes of maintaining consistency with the current Silva taxonomy that is used for 
phylogenetic assignment of iTag sequences in this report. 
 



phylogenetic relationships of the sequences from the general bacterial 16S rRNA gene 342 

clone library (Fig. 3). Numerous sequences in the clone library record the presence of 343 

sulfide-oxidizing bacteria in the depositional environment from which the barite crusts 344 

precipitated (Highlighted in Figure 3). Seven sequences fell within the 345 

Alphaproteobacteria and grouped with the family Rhodobacteraceae, which include the 346 

known sulfide-oxidizing bacteria genera Roseobacter, Sulfitobacter, and Roseovarius 347 

(Buchan et al., 2005). Four sequences fell within the Epsilonproteobacteria, two of which 348 

grouped with Sulfurospirillum and two of which grouped with Sulfurovum, both known 349 

sulfide-oxidizing bacteria (Campbell et al., 2006). Other phylotypes in the clone library 350 

fell within the Bacteroidetes, Firmicutes, and unclassified bacteria. The clade-specific 351 

clone library targeting the Beggiatoaceae, again from the same barite sample, used 352 

primers 341F and VSOXbR (Salman et al., 2011) (Figure 2), and produced nine 353 

sequences, two of which clustered with Candidatus Maribeggiatoa vulgaris (Fig. 3, 354 

green-labels). 355 

Precipitation Experiments 356 

  Laboratory cultures of four sulfur-oxidizing bacteria and one organoheterotrophic 357 

control organism were incubated on barium-rich media to observe the influence of sulfate 358 

generation via sulfur oxidation under barium-rich, sulfate-poor conditions. Such 359 

conditions are encountered in brine pool settings like that of Dead Crab Lake where 360 

mineralized Beggiatoa filaments were discovered. Beggiatoa spp. were not selected as 361 

test strains because a marine Beggiatoa culture was not available and because Beggiatoa 362 

enrichments require gradient media and other geochemical conditions that make them 363 

impractical for these mineral precipitation experiments. Thiosulfate was used instead of 364 



sulfide because it is easier to manipulate in laboratory experiments. Thiosulfate is readily 365 

oxidized by diverse lithotrophs that also oxidize hydrogen sulfide, and its oxidation also 366 

yields sulfate and protons, the chemical species thought relevant to barite precipitation:  367 

  S2O3
2- + H2O + 2 O2 → 2 SO4

2- + 2H+   Equation 4 368 

  Development of observable barite precipitates varied between the five experimental 369 

isolates. Barite precipitation was observed in Roseobacter sp. colonies on the third day of 370 

the experiment (Figure 1F, Figure S4). Thiomicrospira crunogena showed barite 371 

precipitation by the fourth day of the experiment. S. thiotaurini colonies exhibited barite 372 

precipitates on the tenth day after inoculation. Halomonas sp. exhibited no barite or other 373 

mineral precipitation until 45 days after inoculation. Density, concentration, and location 374 

of the precipitates associated with Halomonas sp. were similar to those exhibited by the 375 

other sulfur-oxidizing bacteria.   Barite precipitates developed by the twelfth day on 376 

plates with the heterotrophic control isolate, Maribacter sp.; although unlike with the 377 

other isolates where minerals precipitated directly and exclusively on the colony biomass, 378 

Maribacter-associated precipitates were always restricted to a circular halo ~5 mm away 379 

from the colony (Figure S4). Barite precipitates were not observed to form on colony 380 

biomass with Maribacter, in direct contrast to the sulfide-oxidizing bacterial isolates 381 

tested. Mineral precipitates on colonies (or in the region surrounding the colonies in the 382 

case of Maribacter sp.) were characterized using an XRD microdiffractometer. XRD 383 

analysis of all five bacterial isolates show peaks that closely resemble reference peaks for 384 

barite (Fig. S3). Uninoculated control plates showed no mineral-precipitation or XRD 385 

signal. PFA-fixed cells were also examined and no mineral precipitation was observed 386 

with the PFA-fixed controls.  387 



Changes in pH, as reflected in a color change of the phenol red within the agar, 388 

occurred before mineral precipitation was easily observed by eye on the agar plates.  In 389 

the case of T. crunogena, Roseobacter sp. and S. thiotaurini the agar around the cell 390 

colonies turned yellow from acid production. Initial growth of the halomonad, on the 391 

other hand, resulted in a darkening or more fuchsia appearance of the agar plate 392 

suggestive of tetrathionate production.  But after 45 days the agar plates returned to their 393 

original color and barite crystals were observed.  Lastly, growth of Maribacter sp. turned 394 

the agar plate slightly more yellow but the pH change occurred more diffusely throughout 395 

the agar plate and was not localized around the bacterial colonies.    396 

 397 

 398 

Sulfur and oxygen isotopes of barites 399 

  Sulfur and oxygen isotopic compositions of barite mineralized filaments, barite crusts, 400 

and subsamples of barite chimneys are provided in Table S1 and plotted in Figure 4. The 401 

barite samples studied here show little variability between samples, with δ34S values that 402 

ranged from 21.2 to 21.9‰, and δ18O that ranged from 9.6 to 10.4‰. Although slightly 403 

enriched in 34S and 18O relative to Gulf of Mexico bottom water sulfate [δ34S = 20.3‰, 404 

and δ18O = 9.7‰ (Aharon & Fu, 2000)], GC246 barites have lower δ34S and δ18O values 405 

in comparison to other barite samples from the Gulf of Mexico reported by (Feng & 406 

Roberts, 2011) (Fig. 4). 407 

 408 

DISCUSSION 409 

Barite mineral filaments are encrusted Beggiatoa 410 



  The sediments on the shoreline of Dead Crab Lake were covered with microbial mats 411 

predominated by filamentous sulfide-oxidizing Beggiatoa sp. 2 (Fig. 1A). The barite-412 

mineralized filaments preserved in crust samples from two sites at GC246 at the margins 413 

of these mats are of similar size and morphology to Beggiatoa, and sometimes exhibit 414 

apparent septations that resemble the linear arrangement of cells within the trichomes of 415 

Beggiatoa, (Fig. 1C). Additionally, the observation of unmineralized and partially 416 

mineralized Beggiatoa (Fig. 1D, E), in and on the same samples that contain the barite 417 

mineral filaments suggests a continuum in the encrustation of Beggiatoa, from 418 

completely mineral-free, to partially mineralized, to fully mineral-encrusted filaments 419 

that become a structural component of the barite crust. Our conclusion that the mineral 420 

filaments are encrusted Beggiatoa is further supported by the recovery of 16S rRNA 421 

genes closely related to Candidatus Maribeggiatoa vulgaris in the clone libraries that 422 

were produced from samples that contain mineralized filaments (Fig. 3). While it is 423 

possible that living cells were present in void spaces within the crust, the lack of 424 

amplifiable DNA in rinsate fluids tested prior to DNA extraction from the crust, as well 425 

as the presence of partially mineralized Beggiatoa filaments in portions of the crust, 426 

suggest that at least some of the Beggiatoa DNA is coeval with barite precipitation. It is 427 

not surprising that Maribeggiatoa 16S rRNA gene sequences represent a relatively minor 428 

portion of the libraries here, given that numerous other studies have reported difficulties 429 

with amplifying 16S rRNA gene sequences from samples visibly dominated by 430 

                                                 
2 We use “Beggiatoa” here to refer to the polyphyletic group of non-sheath-forming 
filamentous sulfide-oxidizing bacteria within the family Beggiatoacaea. Sequence data 
suggest that at least some of the organisms in the “Beggiatoa” mats are representatives of 
the candidate genus Ca. Maribeggiatoa (Salman et al., 2011).  



Beggiatoa and related organisms in the family Beggiatoaceae (e.g., Sekar 2006; Salman 431 

et al., 2012; Jones et al., 2015).   432 

  In the barite crust samples studied here, bacterial filaments are the only identifiable 433 

organic surfaces covered with barite crystals and void space was observed between some 434 

neighboring filaments (Fig. 1B). Regions containing dense accumulations of obvious 435 

mineral filaments are commonly surrounded by massive barite crusts that gradationally 436 

exhibit less filamentous textures (Fig. S1). Dense networks of mineral filaments can take 437 

on a clotted appearance similar to the more massive barite crystal aggregates that make 438 

up the bulk of the crust exterior (Fig. S1). These microfacies relationships suggest that, at 439 

least in the samples we examined, precipitation was initiated on the filaments and these 440 

initial precipitates served as a foundation for the precipitation of a more massive 441 

authigenic crust. Fig. 1C-D shows barite crystallites precipitating preferentially on 442 

Beggiatoa filaments. Whether mineralized filaments are foundational to the extensive 443 

authigenic barite crusts present at this site, or other brine seeps, remains an open 444 

question. However, samples containing mineralized filaments were collected on two 445 

separate submersible dives in three different samples collected at GC246, so they are 446 

clearly common at this site. Other benthic substrates such as rocks, sediment grains, and 447 

mussel shells, were not encrusted by barite at this site.   448 

  In addition to hosting the molecular remains of Candidatus Maribeggiatoa, the filament-449 

hosting crusts from the Gulf of Mexico also contain genetic material from other bacteria, 450 

including other known sulfide-oxidizing bacteria (Figs. 2-3). Broad phylogenetic trends 451 

observed in the 16S rRNA gene iTag amplicon library of mineral-hosted DNA were very 452 

similar to those obtained in the bacterial clone library (Fig. 2).  Both the clone library and 453 



the iTag amplicon dataset showed that diverse sulfide-oxidizing bacteria were present in 454 

the microenvironment from which the barite precipitated. The recovery of sequences 455 

representing taxa within the orders Desulfobacterales, Desulfuromonadales, and 456 

Desulfovibrionales (Figure 2) further suggest that sulfate reduction may have been 457 

occurring in close spatial proximity to sulfide oxidation, and that a community actively 458 

involved in sulfur cycling was entombed by barite precipitation. 459 

 460 

Is barite encrustation of cells induced by sulfide-oxidation? 461 

  The generation of sulfate by sulfide-oxidizing bacteria is thought to promote barite 462 

precipitation in certain modern non-marine settings where sulfate is absent or found only 463 

in low concentrations (Senko et al., 2004; Bonny & Jones, 2008a). Bacterial sulfide-464 

oxidation has also been invoked to explain the patchy occurrence of authigenic barite in 465 

Miocene lake deposits (Sanz-Montero et al., 2009). In the marine environment where 466 

sulfate is abundant, bacterial sulfide oxidation is not considered relevant to barite 467 

precipitation. However, certain brine fluids, such as those at Dead Crab Lake, are 468 

enriched in barium and free of measurable sulfate, raising the possibility that sulfate 469 

production via lithotrophic sulfide oxidation leads to barite precipitation. 470 

  We exposed laboratory cultures of sulfide-oxidizing bacteria and organoheterotrophic 471 

control organisms to barium-rich culture conditions to determine whether sulfide-472 

oxidation would promote rapid cell barite encrustation of cell material, reminiscent of 473 

what is observed in the barite-encrusted Beggiatoa from the Gulf of Mexico.  Barite 474 

precipitated on Roseobacter sp. colonies within three days of inoculation, and on T. 475 

crunogena colonies after four days. Barite precipitated on other sulfide-oxidizing strains 476 



as well, but precipitate formation was slower than with Roseobacter sp. or T. crunogena. 477 

The observation that barite precipitation occurred most rapidly on Roseobacter and T. 478 

crunogena colonies may be explained by the fact that both of these organisms possess a 479 

complete Sox sulfur oxidation pathway, including those genes that code for the SoxCD 480 

subunits (Scott et al., 2006). These organisms oxidize thiosulfate directly to sulfuric acid 481 

without producing elemental sulfur intermediates (Meyer et al., 2007).  482 

Like Beggiatoa, S. thiotaurini has an incomplete Sox sulfide oxidation pathway, 483 

which results in the production of elemental sulfur. Sulfur bacteria with incomplete Sox 484 

pathways, such as Beggiatoa and S. thiotaurini, require other pathways, such as the 485 

pathway that uses reverse dissimilatory sulfate reductase (rDsr), in addition to a partial 486 

Sox pathway, to oxidize elemental sulfur to sulfite and ultimately sulfate (Mußmann et 487 

al., 2003). Because S. thiotaurini produces elemental sulfur intermediates before it 488 

produces sulfate, we might predict that sulfate production, and concomitant barite 489 

precipitation, would be slower with S. thiotaurini, and indeed barite precipitation did not 490 

occur until the tenth day of the experiment with strain S. thiotaurini.  491 

In Halomonas sp., tetrathionate, rather than sulfate, is the primary end product of 492 

thiosulfate oxidation (Sorokin et al., 1999;  Podgorsek & Imhoff, 1999). Halomonas sp. 493 

colonies did not exhibit barite precipitation until 45 days after inoculation. PFA-fixed 494 

control cells did not exhibit barite precipitates in any of these strains, suggesting that 495 

thiosulfate oxidation in these experiment was responsible for sulfate production and 496 

barite precipitation.  Precipitates were found in association with the organoheterotroph 497 

Maribacter sp., but instead of the barite precipitating on colony biomass, as it had with 498 

the sulfide-oxidizing strains, barites associated with Maribacter sp. occurred only as 499 



halos that formed >5 mm away from the colony biomass. Mineral precipitates were never 500 

observed on Maribacter colony biomass. Similar halo production has previously been 501 

reported in several Vibrio species grown on sulfate-containing agar medium and is 502 

thought to result from sulfatase activity (Kitaura et al., 1983). Additionally agar-503 

degrading bacteria have the potential to form pits in agar-based media. Members of the 504 

Bacteroidetes, especially members of the Flavobacteria, are known to degrade agar. 505 

These organisms can potentially hydrolyze carrageenan, which is a sulfated 506 

polysaccharide found in the red algae from which the agar is derived (Michel et al., 507 

2006). If carrageenans in the agar were hydrolyzed by Maribacter, bound sulfate would 508 

be released, which could explain the halo-shaped barite precipitates observed in the 509 

organoheterotroph control experiments. But importantly, barite did not precipitate on the 510 

cell biomass as it did with all tested cultures of sulfide-oxidizing bacteria. Our 511 

interpretations of microbial physiology as it relates to barite precipitation are supported 512 

by our observations of pH changes reflected in the color change of phenol red.  513 

    The results of the precipitation experiments demonstrate that under sulfate-depleted 514 

conditions, the oxidation of reduced sulfur compounds such as hydrogen sulfide and 515 

thiosulfate can result in the rapid precipitation of barite that is localized on cell biomass.   516 

In some cases, barite precipitation was rapid enough to entomb cells (Fig. 1G). The brine 517 

fluids from Dead Crab Lake are enriched with barium, but lack sulfate (Joye et al., In 518 

Preparation). Feng and Roberts (2011) also note that the precipitation of barite can locally 519 

deplete sulfate, creating a zone of depletion that may provide opportunities for sulfide 520 

oxidation to contribute sulfate to barite formation. At Dead Crab Lake, extensive mats of 521 

Beggiatoa occupy the interface between seawater and brine fluids. Our experimental 522 



results suggest that if brine fluids encountered sulfide diffusing from microbial sulfate 523 

reduction in subjacent sediments, then the production of sulfate from sulfide-oxidation 524 

has the potential to trigger rapid barite precipitation and encrustation of Beggiatoa 525 

biomass as recorded by the barite-mineralized filaments. Additionally, the precipitation 526 

of extensive barite precipitates on non-filamentous bacteria in our precipitation 527 

experiments, and the recovery of DNA from non-filamentous sulfur bacteria from the 528 

barite crusts, leaves open the possibility that amorphous barite precipitates formed on 529 

non-filamentous bacteria, but unlike the mineralized filaments, there is no specific 530 

morphological evidence that this occurred. 531 

 532 

Did sulfur oxidation play a role in the formation of Gulf of Mexico barite crusts? 533 

  Paired δ34S and δ18O analysis provide a record of the source and diagenetic history of 534 

sulfate incorporated into sedimentary barites. Isotope fractionations produced during 535 

enzymatic reactions within sulfate-reducing bacteria tend to generate residual pools of 536 

34S-enriched and 18O-enriched sulfate, although the isotope effects are different for sulfur 537 

and oxygen (Brunner et al., 2005; Bradley et al., 2011). The isotopic offset between 538 

sulfate and sulfide that is produced during dissimilatory sulfate reduction can be large in 539 

magnitude (up to 66‰), and tends to decrease when sulfate reduction rates are elevated 540 

(Sim et al., 2011; Leavitt et al., 2013), or when sulfate concentration is limiting (Habicht 541 

et al., 2002). In batch experiments, rate-dependent sulfur isotope fractionations appear to 542 

be largely controlled by electron donor supply (Leavitt et al., 2013), and in natural 543 

systems, higher sulfate reduction rates are associated with lower isotope fractionations as 544 

measured in oil and gas seeps of the Gulf of Mexico (Aharon and Fu, 2000). Residual 545 



sulfate-oxygen isotope values also increase as a function of sulfate reduction; however, 546 

the overall effect is governed by equilibrium oxygen isotope exchange between 547 

intracellular sulfoxy ions and ambient water (Brunner et al., 2005; Wankel et al., 2014). 548 

In addition to the pathway of dissimilatory sulfate reduction, consortia of methanotrophic 549 

archaea and sulfate-reducing bacteria can couple anaerobic oxidation of methane to 550 

sulfate reduction (AOM-SR) in sedimentary environments where sulfate and methane 551 

gradients overlap (Boetius et al., 2000; Orphan et al., 2001; Joye et al., 2004; Orcutt et 552 

al., 2005; Milucka et al., 2012).  The sulfur and oxygen isotope fractionations during 553 

AOM-SR are similar in magnitude to sulfate reduction and tend to decrease in methane 554 

charged gas seeps (Deusner et al., 2014).  555 

  Regardless of the microbiota or their biochemical pathways, barites that form within the 556 

zone of sulfate reduction at hydrocarbon seeps tend to record a trend of increasing δ34S 557 

and δ18O sulfate values such as those expected from microbial sulfate reduction (Aharon 558 

& Fu, 2000; Feng & Roberts, 2011). The authigenic barites studied here were enriched in 559 

34S and 18O relative to contemporaneous seawater (Fig. 4); however, authigenic barites 560 

from other methane seeps generally have comparatively higher δ34S and δ18O values 561 

(Feng & Roberts 2011). Feng and Roberts (2011) proposed that barite crusts with higher 562 

δ34S and δ18O values formed beneath the sediment/water interface under conditions 563 

where barium fluxes are relatively low, and efficient bacterial sulfate reduction can drive 564 

residual pore water fluids toward greater enrichment in 34S and 18O. Conversely, barites 565 

that precipitate at the sediment/water interface have δ34S and δ18O values closer to 566 

seawater values, but slightly enriched in 34S and 18O, similar to that observed here, a 567 

correlation that has been attributed to less efficient sulfate reduction in a more open 568 



system (Feng and Roberts, 2011). This interpretation explains at least some of the 569 

disparity in isotope values seen in barites that formed at, or above, the sediment/water 570 

interface relative to those that precipitated in the sediments.   571 

  In the case of the barite samples studied here, molecular evidence suggests a close 572 

spatial association between sulfate-reducing bacteria and sulfide-oxidizing bacteria. We 573 

suggest that one additional aspect of the more geochemically-open system near the 574 

sediment/water interface is the presence of sulfide-oxidizing bacterial mats that can 575 

shuttle sulfide to sulfate during sulfur oxidation. The relatively small sulfur isotope 576 

effects (± 5‰) that occur during biological sulfide oxidation (Fry et al., 1986;  Zerkle et 577 

al., 2009;  Brabec et al., 2012), would produce sulfate with low δ34S values that, when 578 

mixed with the local pool of dissolved sulfate in the microenvironment from which the 579 

barite precipitated, can result in barite with muted 34S-enrichments. Oxygen isotope 580 

exchange during sulfide oxidation can also contribute to low δ18O values. The oxidation 581 

effects are likely buffered by co-precipitation of contemporaneous seawater sulfate in the 582 

barite crusts studied here. The presence of molecular signatures indicating a close 583 

association between sulfate-reducing bacteria and sulfide-oxidizing bacteria, and the 584 

precipitation of barite directly on mats of sulfide-oxidizing bacteria within the barite 585 

crusts, provide evidence for an active oxidative sulfur cycle. This microenvironment 586 

fosters barite precipitation where sulfide oxidation potentially contributed, at least in part, 587 

to the precipitation of barite on cell biomass, leading to mineral entombment of the kind 588 

that is observed in samples from Dead Crab Lake brine pool.  The localization of barite 589 

precipitates on filaments of sulfide-oxidizing bacteria, as opposed to other benthic 590 

substrates such as rocks, shells or sediment grains, also supports the idea that sulfide 591 



oxidation may have played a role in the encrustation of the filaments by barite. We 592 

suggest that the barite crusts observed in this study, which are slightly enriched in 34S and 593 

18O relative to seawater, formed at an interface in which both seawater sulfate and 594 

sulfide-oxidation supplied sulfate for the precipitation of barite.  595 

 596 

CONCLUSIONS 597 

   Chemolithotrophic microbes commonly colonize interfaces between geochemical 598 

zones, such as the gradients conditions between reduced sulfur and oxygen, or reduced 599 

iron and oxygen. At these geochemical interfaces, abiotic oxidation reactions that are 600 

thermodynamic favorability may be kinetically slow (Gartman et al., 2011). The 601 

metabolic activity of lithotrophic organisms, along with the potential of cells to serve as 602 

nucleation sites, can increase the rate of precipitation of minerals at such interfaces, and 603 

influence the physical and chemical characteristics of any precipitates that may form. 604 

Mats of sulfide-oxidizing bacteria colonize steep geochemical interfaces separating 605 

anoxic, sulfidic, barium-rich fluids, and oxic, sulfate-rich bottom waters, at brine pools in 606 

the Gulf of Mexico. These sediments are provided with hydrogen sulfide produced by 607 

dissimilatory sulfate reduction in surrounding sediments. If microbes were not present at 608 

this interface, barite would (and does) precipitate as barium-rich fluids encounter 609 

seawater that contains sulfate (Fu et al., 1994; Torres et. al. 1996; Aquilina et al., 1997; 610 

Castellini et al., 2006; Roberts et al., 2010). However, mats of sulfide-oxidizing bacteria 611 

can also generate sulfate through the oxidation of sulfide and/or provide substrates for 612 

mineral nucleation in this zone. The mineralized filaments described here precipitated 613 

under conditions that were not directly observed, and the isotopic composition of the 614 



barite-encrusted filaments do not, by themselves, provide unambiguous evidence of 615 

sulfide oxidation contributing to barite precipitation. However, the isotopic values are 616 

fully consistent with a depositional environment in which sulfide oxidation is occurring 617 

and contributing sulfate to barite precipitation. Laboratory experiments show that sulfate 618 

evolved from sulfide oxidation in simulated brine fluids leads to rapid barite precipitation 619 

on cell biomass, encrusting sulfide-oxidizing bacteria in a manner reminiscent of the 620 

encrustation on Beggiatoa observed in the Gulf of Mexico barite crusts studied here. Our 621 

observations suggest that bacterial sulfide oxidation may be involved in barite 622 

precipitation under certain marine conditions, via the production of sulfate in a manner 623 

similar to that already known to occur in non-marine environments (e.g., Senko et al., 624 

2004; Bonny & Jones, 2008a). The expansion of the environments in which bacterial 625 

sulfide oxidation is suspected to facilitate barite precipitation introduces new possibilities 626 

for the origins of certain ancient barite deposits. Additionally, the discovery of barite 627 

mineralization of Beggiatoa in modern marine sediments extends the fossilization 628 

potential of these organisms beyond their currently known preservation in carbonates and 629 

phosphorites, and opens up the possibility that they are preserved in ancient marine barite 630 

deposits as well.    631 

 632 
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 646 
FIGURES  647 

 648 
Fig. 1: A) Dead Crab Lake, a brine pool (bp) in the Gulf of Mexico, is surrounded by a 649 
complex assemblage of multi-colored mineral crusts (mc) and microbial mats containing 650 
abundant Beggiatoa. B) Networks of mineralized filaments (arrows) are found within 651 
barite crusts. The filament network is surrounded by barite precipitates that have a 652 
massive, non-filamentous habit. C) Detail showing barite mineral filaments that exhibit 653 
apparent septations that, if biological in origin,  resemble those of Beggiatoa filaments. 654 
D, E) Scanning electron microscope images of bacterial filaments from Dead Crab Lake 655 
partially encrusted in barite.  F) Light microscope images of barite experimentally 656 
precipitated on Roseobacter colony. G) Scanning electron micrographs showing 657 
morphologies of experimental barite precipitates. Arrows indicate areas of probable 658 
bacterial cells entombed within barite precipitates. Other bacterial experiments show 659 
similar encrustation of colony biomass.  Scale bar in A= ~30 cm B = 1 mm, C = 100 µm, 660 
D = 40 µm, E = 10 µm; F = 100 µm, G = 3 µm. 661 



 662 
 663 

 664 
Fig. 2: Taxonomic composition of the bacterial 16S rRNA gene clone library and the 16S 665 
rRNA gene iTag amplicon library from a single filament-hosting barite crust sample.  Pie 666 
charts at right summarizing a subset of the iTag results show the composition at the order 667 
level for deltaproteobacteria and gammaproteobacteria, and at the genus level for 668 
epsilonproteobacteria. Both libraries were generated from the same DNA extraction. 669 



 670 
 671 
Fig. 3:  Neighbor joining phylogram of 16S rRNA gene sequences from the barite crust 672 
bacterial clone library showing putative sulfide-oxidizing bacteria. Sequences generated 673 
from general bacterial primers are highlighted in purple, while sequences produced with 674 
Beggiatoaceae-specific primers are shown in green. Bootstrap values greater than 50 are 675 
shown for each node. 676 
 677 



 678 
Fig. 4: δ18O and δ34S of sulfates and barites in the Gulf of Mexico including those 679 
reported on by Feng and Roberts (2011) (gray triangles), and those in this study that 680 
include barite mineralized filaments and surrounding barite cements, show enrichment in 681 
18O and 34S. This enrichment tracks the isotopic evolution of sedimentary pore waters 682 
influenced to varying degrees by microbial sulfate reduction, the trajectory of which is 683 
shown by Arrow 1. Inset shows detail of samples from this study relative to seawater 684 
sulfate. Barites that are less enriched in 18O and 34S may result from lower rates of sulfate 685 
reduction, a more open system that allows for the incorporation of seawater sulfate, 686 
and/or the incorporation of sulfate produced by sulfide oxidation. Trajectories shown by 687 
Arrows 2 and 3 show varying degrees of potential oxygen isotope exchange with ambient 688 
pore water and seawater. 689 
 690 
SUPPLEMENT 691 

 692 



Fig. S1. Where accumulations of barite-mineralized filaments attain sufficient density, an 693 
amorphous globular barite crystal mass can result.  These massive textures resemble the 694 
precipitates that make up the bulk of the barite crusts. Scale bar = 100μm. 695 
 696 

 697 
 698 
Fig. S2. X-ray diffraction diagram of precipitates found in GOM mineral crust. Typical 699 
barite (BaSO4) peaks are indicated at bottom for comparison. A minor quartz (SiO2) peak 700 
is visible at ~ 2θ 26.5o and an unidentified peak is visible at ~ 2θ 45o. 701 
 702 



 703 
Fig. S3. Representative micro XRD diffractogram of precipitates found in laboratory 704 
precipitation experiments with Roseobacter. Precipitates associated with other strains 705 
were very similar to this one.  Typical barite (BaSO4) peaks are indicated for comparison. 706 
 707 
 708 

 709 
Fig. S4. Reflected light images of colonies from barite precipitation experiments. Images 710 
show precipitation results of microbial growth on media of 10 mM Na2S2O3 with 2mM 711 
BaCl (above) and without 2mM BaCl (below).  Scale bars = 100 μm. 712 
 713 
 714 



Table S1. Primer sequences used for clone libraries, iTag and isolate screening. Illumina 715 
amplicon V3_7R contains a barcode region (shaded) used to distinguish the sample from 716 
a pooled dataset.  717 
Primer Sequence Reference 
EUB 27F  AGAGTTTGATCMTGGCTCAG Lane, 1991 
EUB 1492R  GGTTACCTTGTTACGACTT Lane, 1991 
EUB primer 341F CCTACGGGAGGCAGCAG Salman et al., 2011 
VSOXBr GGATYAATYTCCCCCAACAT Kalanetra et al., 

2005 
V3_7R  
 

caagcagaagacggcatacgagatGATCTGgtgactggagttcagacgtgtgc
tcttccgatctATTACCGCGGCTGCTGG 

Bartram et al., 
2011 

V3_F modified2 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatct
NNNNCCTACGGGAGGCAGCAG 

Bartram et al., 
2011 

soxB693F ATCGGNCARGCNTTYCCNTA Petri et al., 2001 
soxB1164B AARTTNCCNCGNCGRTA Petri et al., 2001 
 718 
 719 
Table S2. 720 
Location Sample 

type 
Primary XRD  
mineral composition  

δ34SBarite 
(‰ V-CDT) 

δ18OBarite 
(‰ V-SMOW) 

GC246 Chimney Barite 21.6 9.7 
GC246 Chimney Barite 21.5 9.6 
GC246 Crust Barite 21.2 10.1 
GC246 Crust Barite 21.8 10.4 
GC246 Crust Barite 21.6 10.1 
GC246 Filaments Barite 21.9 9.9 
GC246 Filaments Barite 21.6 10.1 
GC246 Filaments Barite 21.6 9.8 
 721 
 722 
 723 
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