1,978 research outputs found

    The University as Citizen: Institutional Identity and Social Responsibility

    Get PDF
    To act responsibly, we must know who we are. If higher education today is uncertain about its social responsibilities, as seems manifestly the case, then this suggests that the American academy is unsure about its institutional identity. For organizations as for individuals, responsibility follows from relationships. But relationships grow out of our purposes even as how we relate to others helps to shape our aims. Vital and successful institutions stand out by their ability to maintain their direction and sense of meaning even amid significant shifts in the social landscape. Indeed, they can aid in providing direction for other institutions, keeping them true to their purposes. Now, however, as major economic and social change shakes American society, higher education is facing serious tests of its resourcefulness: Can the academy reinvigorate its central mission amid difficult and confusing conditions

    Forming a Life of the Mind for Practice: Teaching Practical Reasoning

    Get PDF

    Educating Lawyers: Preparation for the Profession of Law

    Get PDF
    Examines the unique aspects and limitations of legal education, as part of a series of reports from the foundation's Preparation for the Professions Program

    Introduction

    Get PDF
    On August 19, 1994, the sponsorship of this Law School was transferred from the University of Puget Sound to a new parent institution, Seattle University, and the school became the Seattle University School of Law. It is now our great pleasure to welcome all past subscribers and supporters to the first issue of the Seattle University Law Review. Seattle University brings to the Law School the tradition of excellence of the Jesuit-sponsored universities and their law schools throughout the nation. From Fordham and Georgetown to Santa Clara and the Loyolas, these law schools have attained uniform reputations of quality and national prominence. Under its new sponsorship, the Seattle University School of Law will maintain the fine teaching and scholarly faculty, and the model clinical and legal writing programs that have brought it accolades in the past. The new partnership with Seattle University provides institutional support and opportunities for our law programs to flourish and to mesh with the other interdisciplinary activities and graduate programs of Seattle University. This merger of a thriving law school with an established and respected full service university is unprecedented, and is full of promise for both institutions. The Law Review will maintain its fine tradition of offering a balance of Symposia Issues, Articles, Notes and Comments that are timely and relevant for readers in both the northwest and the national legal community. We shall appreciate your continued support of the Seattle University Law Review and we promise you a publication that will be of continued and expanded service

    Recent Decisions

    Get PDF
    Comments on recent decisions by John M. Sullivan, William G. Greif, Joseph F. MacKrell, William N. Antonis, Thomas Meaney, Jr., William J. Hurley, Joseph H. Harrison, Robert L. Berry, Robert F. McCoy, Edward Canary, Maynard R. Bissonnette, and Luke R. Morin

    The Hydrogeology of North Lummi Island, Washington

    Get PDF
    Lummi Island is a 10.8 square mile island in the northern Puget Sound Region, west of Bellingham, Washington. The population of Lummi Island has grown steadily for decades to approximately 900 permanent and 1,500 seasonal residents. The increasing demand for groundwater resources on the island has caused some wells to experience seasonal shortages and seawater intrusion, prompting an assessment of the hydrogeology for growth-management purposes. My study focused on characterizing the hydrogeology of the north half of the island (3.9 square miles) where most residents live and where groundwater is the sole source of potable water. I examined data collected from up to 130 wells including well logs, seasonal water level measurements, water chemistry, and precise GPS well-head elevations and positions. From these data, I created a three-dimensional bedrock and unconsolidated stratigraphic model using Department of Defense Groundwater Modeling Software. A dramatically undulating bedrock surface is concealed nearly everywhere by mostly fine-grained unconsolidated Pleistocene deposits up to 300 feet thick. Bedrock in the study area is dominated by tightly-folded sandstone, shale, and conglomerate of the Tertiary Chuckanut Formation (sandstone) in the north. This is separated by a deep southeastnorthwest trending trough from metamorphosed volcanics of the pre-Tertiary Fidalgo opiolite sequence (greenstone) in the south. The stratigraphic model and potentiometric data were used to identify and define the extent, volume, and thickness of at least 12 distinct aquifers. The major aquifer is the Sandstone Aquifer, one of two separate bedrock aquifers that occupy the majority of the study area. Half of 130 wells examined are in sandstone and greenstone. Hydraulic properties including horizontal hydraulic conductivity, estimated from well log data, indicate the Sandstone Aquifer is in the upper range of textbook values for fractured sandstone. The Greenstone Aquifer is much smaller and has the lowest hydraulic properties of any in the study area. Seasonal water level fluctuations are greatest in the bedrock aquifers. Ten Pleistocene aquifers were identified as thin, largely discontinuous coarse-grained (mostly sand) lenses within less permeable, fine-grained silt-clay diamicton. These aquifers fill depressions in the bedrock surface. Seven Pleistocene aquifers lie below sea level and three are perched well above sea level. The Legoe Bay and Nugent aquifers are the largest and most utilized Pleistocene groundwater source, occupying most of the southern half of the study area. These aquifers have the highest hydraulic properties and mostly negligible seasonal water level fluctuations. Recharge areas identified through the stratigraphic model, potentiometric surfaces, and water chemistry occupy the inland and upper regions of the study area. Infiltration of water through overlying glacial drift into bedrock aquifers is the most important recharge mechanism because of their large areal extent and because many Pleistocene aquifers receive recharge, in part, from where they are in contact with saturated bedrock. The average recharge magnitude, estimated from a site-specific water-mass balance, is 8 inches/year or 24% of average annual precipitation. A chloride-mass balance, performed as a semi-independent estimate, establishes a lower bound for recharge of 4 inches/year or 11% of average annual precipitation. Water-chemistry data vary among aquifer media. Water chemistry in the Sandstone Aquifer is dominated by sodium ions while most Pleistocene aquifers are dominated by calcium ions. Despite that nearly 80% of all wells that are completed below sea level, wide-spread seawater intrusion is not evident. Only 5 wells were determined to be intruded and, 14 additional wells may be experiencing some degree of intrusion. Occurrences of seawater intrusion are localized and are most common in the Sandstone Aquifer where low storage and fracture flow combine to increase contamination susceptibility

    TgATAT-Mediated α-Tubulin Acetylation Is Required for Division of the Protozoan Parasite Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is a widespread protozoan parasite that causes potentially life-threatening opportunistic disease. New inhibitors of parasite replication are urgently needed, as the current antifolate treatment is also toxic to patients. Microtubules are essential cytoskeletal components that have been selectively targeted in microbial pathogens; further study of tubulin in Toxoplasma may reveal novel therapeutic opportunities. It has been noted that α-tubulin acetylation at lysine 40 (K40) is enriched during daughter parasite formation, but the impact of this modification on Toxoplasma division and the enzyme mediating its delivery have not been identified. We performed mutational analyses to provide evidence that K40 acetylation stabilizes Toxoplasma microtubules and is required for parasite replication. We also show that an unusual Toxoplasma homologue of α-tubulin acetyltransferase (TgATAT) is expressed in a cell cycle-regulated manner and that its expression peaks during division. Disruption of TgATAT with CRISPR/Cas9 ablates K40 acetylation and induces replication defects; parasites appear to initiate mitosis yet exhibit incomplete or improper nuclear division. Together, these findings establish the importance of tubulin acetylation, exposing a new vulnerability in Toxoplasma that could be pharmacologically targeted. IMPORTANCE Toxoplasma gondii is an opportunistic parasite that infects at least one-third of the world population. New treatments for the disease (toxoplasmosis) are needed since current drugs are toxic to patients. Microtubules are essential cellular structures built from tubulin that show promise as antimicrobial drug targets. Microtubules can be regulated by chemical modification, such as acetylation on lysine 40 (K40). To determine the role of K40 acetylation in Toxoplasma and whether it is a liability to the parasite, we performed mutational analyses of the α-tubulin gene. Our results indicate that parasites cannot survive without K40 acetylation unless microtubules are stabilized with a secondary mutation. Additionally, we identified the parasite enzyme that acetylates α-tubulin (TgATAT). Genetic disruption of TgATAT caused severe defects in parasite replication, further highlighting the importance of α-tubulin K40 acetylation in Toxoplasma and its promise as a potential new drug target

    A glycosylphosphatidylinositol-anchored carbonic anhydrase-related protein of Toxoplasma gondii is important for rhoptry biogenesis and virulence

    Get PDF
    Carbonic anhydrase-related proteins (CARPs) have previously been described as catalytically inactive proteins closely related to α-carbonic anhydrases (α-CAs). These CARPs are found in animals (both vertebrates and invertebrates) and viruses as either independent proteins or domains of other proteins. We report here the identification of a new CARP (TgCA_RP) in the unicellular organism Toxoplasma gondii that is related to the recently described η-class CA found in Plasmodium falciparum. TgCA_RP is posttranslationally modified at its C terminus with a glycosylphosphatidylinositol anchor that is important for its localization in intracellular tachyzoites. The protein localizes throughout the rhoptry bulbs of mature tachyzoites and to the outer membrane of nascent rhoptries in dividing tachyzoites, as demonstrated by immunofluorescence and immunoelectron microscopy using specific antibodies. T. gondii mutant tachyzoites lacking TgCA_RP display a growth and invasion phenotype in vitro and have atypical rhoptry morphology. The mutants also exhibit reduced virulence in a mouse model. Our results show that TgCA_RP plays an important role in the biogenesis of rhoptries
    corecore