21 research outputs found

    Association between GPER gene polymorphisms and GPER expression levels with cancer predisposition and progression

    Get PDF
    Estrogen is a female sex steroid hormone that plays a significant role in physiological functions. Evidence suggests that estrogen-signaling pathways are closely linked to cancer development and progression. The novel G proteincoupled estrogen receptor (GPER or GPR30) has been shown to influence cancer predisposition and progression, although results of related studies remain equivocal. Thus, this meta-analysis aimed to estimate the relationship between GPER gene polymorphisms and GPER expression levels, with cancer predisposition and progression. The pooled results showed that two GPER polymorphisms, rs3808350 and rs3808351, were significantly associated with cancer predisposition, especially in the Asian population, but no significant association was detected for rs11544331. In parallel, we also found that cancer aggressiveness and progression correlated with rs3808351 and GPER expression in cancerous tissues. Altogether, our findings suggest that GPER plays a pivotal role in cancer pathogenesis and progression. We suggest that rs3808350 and rs3808351 may be used as a prospective biomarker for cancer screening; while rs3808351 and GPER expression can be used to examine the prognosis of patients with cancer. Further biological studies are warranted to confirm our findings

    Supp file

    No full text
    Raw data for the integrated marine medaka metagenomics data in gill and gut</p

    Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy

    No full text
    Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis. This review mainly focuses on the regulation of different downstream effectors and pathways via biochemical regulation and posttranslational modifications. We summarize the relationship between DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment. This review also provides basic knowledge of DUBs in the development of cancers and highlights the importance of DUBs in cancer biology

    Data for transcriptomic and iTRAQ proteomic analysis of Anguilla japonica gills in response to osmotic stress

    No full text
    This article contains data related to the two research articles titled Transcriptomic and iTRAQ proteomic approaches reveal novel short-term hyperosmotic stress responsive proteins in the gill of the Japanese eel (Anguilla japonica) (Tse et al. [1]) and iTRAQ-based quantitative proteomic analysis reveals acute hypo-osmotic responsive proteins in the gills of the Japanese eel (Anguilla japonica) (Tse et al. [2]). The two research articles show the usefulness of combining transcriptomic and proteomic approaches to provide molecular insights of osmoregulation mechanism in a non-model organism, the Japanese eel. The information presented here combines the raw data from the two studies and provides an overview on the physiological functions of fish gills
    corecore