7,961 research outputs found

    Immunity to MHC class I antigen after direct DNA transfer into skeletal muscle.

    Get PDF
    Plasmid cDNA encoding the alpha-chain of either membrane-bound (pcRT.45) or secreted (pcRQ.B3) RT1Aa MHC class I Ag were transferred to Lewis (RT1(1)) rat skeletal muscle by direct injection. Rats were challenged 7 days later with an ACI (RT1a) heterotropic heart transplant, and cardiac allograft survival, RT1Aa-specific antibody levels, and frequency of ACI-specific CTL were monitored. Graft rejection was accelerated by > or = 2 days in an Ag-specific and dose-dependent manner in pcRT.45-injected rats. The pcRQ.B3-injected rats also rejected grafts more rapidly; however, graft rejection was accelerated by only 1 day, and graft infiltrates were less pronounced than in pcRT.45-injected rats. Injection of pcRT.45 resulted in an increase in ACI-specific CTL precursor frequency 3 days post-transplant, whereas there was no significant change in rats pretreated with pcRQ.B3 injection. Compared with rats injected with a control plasmid encoding firefly luciferase, transfer of pcRT.45 resulted in an increase in RT1Aa-specific IgG and IgM antibody 3 days after heart transplantation. Transfer of pcRQ.B3 resulted in a similar mean increase in RT1Aa-specific IgG and IgM antibody after transplantation, but the variability from rat to rat was greater, with some animals exhibiting strong priming, and others showing little or no priming by gene injection. Our results suggest that skeletal muscle can express either membrane-bound or secreted MHC class I Ag after gene transfer, but that the membrane-bound form is more immunogenic than the secreted form in the high responder Lewis rat. Direct DNA transfer to skeletal muscle provides a rapid and specific approach to studying immunity to allogeneic MHC Ag

    Compression-compression fatigue of Pd_(43)Ni_(10)Cu_(27)P_(20) metallic glass foam

    Get PDF
    Compression-compression fatigue testing of metallic-glass foam is performed. A stress-life curve is constructed, which reveals an endurance limit at a fatigue ratio of about 0.1. The origin of fatigue resistance of this foam is identified to be the tendency of intracellular struts to undergo elastic and reversible buckling, while the fatigue process is understood to advance by anelastic strut buckling leading to localized plasticity (shear banding) and ultimate strut fracture. Curves of peak and valley strain versus number of cycles coupled with plots of hysteresis loops and estimates of energy dissipation at various loading cycles confirm the four stages of foam-fatigue

    Use of donor serum to prevent passive transfer of hyperacute rejection

    Get PDF
    Organ transplantation in presensitized recipients continues to be contraindicated for heart and kidney recipients due to the risk of hyperacute rejection, which has no known treatment at this time. We tested whether donor serum, which contains soluble MHC class I antigen, is able to neutralize the effect of anti-donor antibody in the recipient and prevent hyperacute or accelerated rejection. A rat model of passive immunization was used to test the role of anti-donor antibody in hyperacute rejection. Seven of 10 recipients of hyperimmune serum (HyS), derived from Lewis rats (RT1l) following 3 ACI (RT1a) skin grafts, developed hyperacute or accelerated rejection. Intravenous injection of ACI serum prior to the HyS administration prevented hyperacute rejection in all recipients tested. When third-party (Wistar-Furth, RT1u) serum was given to Lewis rats injected with HyS, hyperacute rejection was not abrogated. When examining the mechanism of this effect, a simple antibody blocking phenomenon was found to be unlikely since flow cytometry analysis showed that ACI serum needed to be present at > or = 256-fold excess compared to HyS to block anti-ACI antibody binding to RT1.Aa+cells by 50%. We tested whether the RT1.Aa class I antigen in ACI serum had other biologic properties that resulted in the prolonged graft survival. However, removal of RT1.Aa antigen from ACI serum prior to use in the passive transfer model did not abrogate the graft prolongation observed previously. These data suggest that components of donor serum other than MHC class I antigen may be useful for preventing the antibody-mediated component of hyperacute rejection

    Complete and safe resection of challenging retroperitoneal tumors: anticipation of multi-organ and major vascular resection and use of adjunct procedures.

    Get PDF
    BackgroundRetroperitoneal tumors are often massive and can involve adjacent organs and/or vital structures, making them difficult to resect. Completeness of resection is within the surgeon's control and critical for long-term survival, particularly for malignant disease. Few studies directly address strategies for complete and safe resection of challenging retroperitoneal tumors.MethodsFifty-six patients representing 63 cases of primary or recurrent retroperitoneal tumor resection between 2004-2009 were identified and a retrospective chart review was performed. Rates of complete resection, use of adjunct procedures, and perioperative complications were recorded.ResultsIn 95% of cases, complete resection was achieved. Fifty-eight percent of these cases required en bloc multi-organ resection, and 8% required major vascular resection. Complete resection rates were higher for primary versus recurrent disease. Adjunct procedures (ureteral stents, femoral nerve monitoring, posterior laminotomy, etc.) were used in 54% of cases. Major postoperative complications occurred in 16% of cases, and one patient died (2% mortality).ConclusionsComplete resection of challenging retroperitoneal tumors is feasible and can be done safely with important pre- and intraoperative considerations in mind

    G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in Caenorhabditis elegans.

    Get PDF
    G protein-coupled receptors (GPCRs) regulate many animal behaviors. GPCR signaling is mediated by agonist-promoted interactions of GPCRs with heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. To further elucidate the role of GRKs in regulating GPCR-mediated behaviors, we utilized the genetic model system Caenorhabditis elegans Our studies demonstrate that grk-2 loss-of-function strains are egg laying-defective and contain low levels of serotonin (5-HT) and high levels of the 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA). The egg laying defect could be rescued by the expression of wild type but not by catalytically inactive grk-2 or by the selective expression of grk-2 in hermaphrodite-specific neurons. The addition of 5-HT or inhibition of 5-HT metabolism also rescued the egg laying defect. Furthermore, we demonstrate that AMX-2 is the primary monoamine oxidase that metabolizes 5-HT in C. elegans, and we also found that grk-2 loss-of-function strains have abnormally high levels of AMX-2 compared with wild-type nematodes. Interestingly, GRK-2 was also found to interact with and promote the phosphorylation of AMX-2. Additional studies reveal that 5-HIAA functions to inhibit egg laying in a manner dependent on the 5-HT receptor SER-1 and the G protein GOA-1. These results demonstrate that GRK-2 modulates 5-HT metabolism by regulating AMX-2 function and that 5-HIAA may function in the SER-1 signaling pathway
    • …
    corecore