115 research outputs found

    Origin of the n-type conductivity of InN: the role of positively charged dislocations

    Get PDF
    As-grown InN is known to exhibit high unintentional n-type conductivity. Hall measurements from a range of high-quality single-crystalline epitaxially grown InN films reveal a dramatic reduction in the electron density (from low 1019 to low 1017 cm–3) with increasing film thickness (from 50 to 12 000 nm). The combination of background donors from impurities and the extreme electron accumulation at InN surfaces is shown to be insufficient to reproduce the measured film thickness dependence of the free-electron density. When positively charged nitrogen vacancies (VN+) along dislocations are also included, agreement is obtained between the calculated and experimental thickness dependence of the free-electron concentration

    Effect of Native Defects on Optical Properties of InxGa1-xN Alloys

    Full text link
    The energy position of the optical absorption edge and the free carrier populations in InxGa1-xN ternary alloys can be controlled using high energy 4He+ irradiation. The blue shift of the absorption edge after irradiation in In-rich material (x > 0.34) is attributed to the band-filling effect (Burstein-Moss shift) due to the native donors introduced by the irradiation. In Ga-rich material, optical absorption measurements show that the irradiation-introduced native defects are inside the bandgap, where they are incorporated as acceptors. The observed irradiation-produced changes in the optical absorption edge and the carrier populations in InxGa1-xN are in excellent agreement with the predictions of the amphoteric defect model

    Valence band offset of InN/AlN heterojunctions measured by X-ray photoelectron spectroscopy

    Get PDF
    The valence band offset of wurtzite-InN/AlN (0001) heterojunctions is determined by x-ray photoelectron spectroscopy to be 1.52±0.17 eV. Together with the resulting conduction band offset of 4.0±0.2 eV, a type-I heterojunction forms between InN and AlN in the straddling arrangement

    The role of dislocation-induced scattering in electronic transport in GaxIn1-xN alloys

    Get PDF
    Abstract Electronic transport in unintentionally doped GaxIn1-xN alloys with various Ga concentrations (x = 0.06, 0.32 and 0.52) is studied. Hall effect measurements are performed at temperatures between 77 and 300 K. Temperature dependence of carrier mobility is analysed by an analytical formula based on two-dimensional degenerate statistics by taking into account all major scattering mechanisms for a two-dimensional electron gas confined in a triangular quantum well between GaxIn1-xN epilayer and GaN buffer. Experimental results show that as the Ga concentration increases, mobility not only decreases drastically but also becomes less temperature dependent. Carrier density is almost temperature independent and tends to increase with increasing Ga concentration. The weak temperature dependence of the mobility may be attributed to screening of polar optical phonon scattering at high temperatures by the high free carrier concentration, which is at the order of 1014 cm−2. In our analytical model, the dislocation density is used as an adjustable parameter for the best fit to the experimental results. Our results reveal that in the samples with lower Ga compositions and carrier concentrations, alloy and interface roughness scattering are the dominant scattering mechanisms at low temperatures, while at high temperatures, optical phonon scattering is the dominant mechanism. In the samples with higher Ga compositions and carrier concentrations, however, dislocation scattering becomes more significant and suppresses the effect of longitudinal optical phonon scattering at high temperatures, leading to an almost temperature-independent behaviour.</jats:p

    Transition from electron accumulation to depletion at InGaN surfaces

    Get PDF
    The composition dependence of the Fermi-level pinning at the oxidized (0001) surfaces of n-type InxGa1−xN films (0<=x<=1) is investigated using x-ray photoemission spectroscopy. The surface Fermi-level position varies from high above the conduction band minimum (CBM) at InN surfaces to significantly below the CBM at GaN surfaces, with the transition from electron accumulation to depletion occurring at approximately x=0.3. The results are consistent with the composition dependence of the band edges with respect to the charge neutrality level

    Defect redistribution in postirradiation rapid-thermal-annealed InN

    Get PDF
    We have applied positron annihilation to study point defects in 2 MeV exp 4 He exp + -irradiated and subsequently rapid-thermal-annealed (RTA) InN grown by molecular-beam epitaxy. The irradiation fluences ranged from 5×10 exp 14 to 2×10 exp 16 cm exp −2. The irradiation primarily produces donor defects but the subjects of this work are the acceptor-type defects produced in lower concentrations: VIn, in addition to negative-ion-type defects. The heat treatment results in a redistribution of the irradiation-induced point defects. The In vacancies near the film-substrate interface appear restructured after the RTA process, possibly influenced by growth defects near the interface, while deeper in the InN layer, the defects produced in the irradiation are partially removed in the annealing. This could be responsible for the improved transport properties of the annealed films.Peer reviewe

    Defect evolution and interplay in n-type InN

    Get PDF
    The nature and interplay of intrinsic point and extended defects in n-type Si-doped InN epilayers with free carrier concentrations up to 6.6x10E20cm-3 are studied using positron annihilation spectroscopy and transmission electron microscopy and compared to results from undoped irradiated films. In as-grown Si-doped samples, V_In-V_N complexes are the dominant III-sublattice related vacancy defects. Enhanced formation of larger V_In-mV_N clusters is observed at the interface, which speaks for high concentrations of additional V_N in the near-interface region and coincides with an increase in the density of screw and edge type dislocations in that area.Comment: 4 pages, 3 figure
    • …
    corecore