109 research outputs found

    A Chemical Composition Survey of the Iron-Complex Globular Cluster NGC 6273 (M 19)

    Get PDF
    Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this "iron-complex" cluster class, and we provide here a chemical and kinematic analysis of > 300 red giant branch (RGB) and asymptotic giant branch (AGB) member stars using high resolution spectra obtained with the Magellan-M2FS and VLT-FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H] = -2 to -1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg-Al anti-correlation may only be present in stars with [Fe/H] > -1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [alpha/Fe] is identified and may have been accreted from a former surrounding field star population. The cluster's large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to omega Cen and M 54.Comment: Accepted for Publication in The Astrophysical Journal; 50 pages; 18 figures; 8 tables; higher resolution figures are available upon request or in the published journal articl

    The Arches Cluster: Extended Structure and Tidal Radius

    Full text link
    At a projected distance of ~26 pc from Sgr A*, the Arches cluster provides insight to star formation in the extreme Galactic Center (GC) environment. Despite its importance, many key properties such as the cluster's internal structure and orbital history are not well known. We present an astrometric and photometric study of the outer region of the Arches cluster (R > 6.25") using HST WFC3IR. Using proper motions we calculate membership probabilities for stars down to F153M = 20 mag (~2.5 M_sun) over a 120" x 120" field of view, an area 144 times larger than previous astrometric studies of the cluster. We construct the radial profile of the Arches to a radius of 75" (~3 pc at 8 kpc), which can be well described by a single power law. From this profile we place a 3-sigma lower limit of 2.8 pc on the observed tidal radius, which is larger than the predicted tidal radius (1 - 2.5 pc). Evidence of mass segregation is observed throughout the cluster and no tidal tail structures are apparent along the orbital path. The absence of breaks in the profile suggests that the Arches has not likely experienced its closest approach to the GC between ~0.2 - 1 Myr ago. If accurate, this constraint indicates that the cluster is on a prograde orbit and is located front of the sky plane that intersects Sgr A*. However, further simulations of clusters in the GC potential are required to interpret the observed profile with more confidence.Comment: 24 pages (17-page main text, 7-page appendix), 24 figures, accepted to Ap

    Prospecting Period Measurements with LSST - Low Mass X-ray Binaries as a Test Case

    Full text link
    The Large Synoptic Survey Telescope (LSST) will provide for unbiased sampling of variability properties of objects with rr mag << 24. This should allow for those objects whose variations reveal their orbital periods (PorbP_{orb}), such as low mass X-ray binaries (LMXBs) and related objects, to be examined in much greater detail and with uniform systematic sampling. However, the baseline LSST observing strategy has temporal sampling that is not optimised for such work in the Galaxy. Here we assess four candidate observing strategies for measurement of PorbP_{orb} in the range 10 minutes to 50 days. We simulate multi-filter quiescent LMXB lightcurves including ellipsoidal modulation and stochastic flaring, and then sample these using LSST's operations simulator (OpSim) over the (mag, PorbP_{orb}) parameter space, and over five sightlines sampling a range of possible reddening values. The percentage of simulated parameter space with correctly returned periods ranges from ∼\sim23 %, for the current baseline strategy, to ∼\sim70 % for the two simulated specialist strategies. Convolving these results with a PorbP_{orb} distribution, a modelled Galactic spatial distribution and reddening maps, we conservatively estimate that the most recent version of the LSST baseline strategy will allow PorbP_{orb} determination for ∼\sim18 % of the Milky Way's LMXB population, whereas strategies that do not reduce observations of the Galactic Plane can improve this dramatically to ∼\sim32 %. This increase would allow characterisation of the full binary population by breaking degeneracies between suggested PorbP_{orb} distributions in the literature. Our results can be used in the ongoing assessment of the effectiveness of various potential cadencing strategies.Comment: Replacement after addressing minor corrections from the referee - mainly improvements in clarificatio

    The Quintuplet Cluster: Extended Structure and Tidal Radius

    Full text link
    The Quintuplet star cluster is one of only three known young (<10<10 Myr) massive (M >104>10^4 M⊙_\odot) clusters within ∼100\sim100 pc of the Galactic Center. In order to explore star cluster formation and evolution in this extreme environment, we analyze the Quintuplet's dynamical structure. Using the HST WFC3-IR instrument, we take astrometric and photometric observations of the Quintuplet covering a 120′′×120′′120''\times120'' field-of-view, which is 1919 times larger than those of previous proper motion studies of the Quintuplet. We generate a catalog of the Quintuplet region with multi-band, near-infrared photometry, proper motions, and cluster membership probabilities for 10,54310,543 stars. We present the radial density profile of 715715 candidate Quintuplet cluster members with M≳4.7M\gtrsim4.7 M⊙_\odot out to 3.23.2 pc from the cluster center. A 3σ3\sigma lower limit of 33 pc is placed on the tidal radius, indicating the lack of a tidal truncation within this radius range. Only weak evidence for mass segregation is found, in contrast to the strong mass segregation found in the Arches cluster, a second and slightly younger massive cluster near the Galactic Center. It is possible that tidal stripping hampers a mass segregation signature, though we find no evidence of spatial asymmetry. Assuming that the Arches and Quintuplet formed with comparable extent, our measurement of the Quintuplet's comparatively large core radius of 0.62−0.10+0.100.62^{+0.10}_{-0.10} pc provides strong empirical evidence that young massive clusters in the Galactic Center dissolve on a several Myr timescale.Comment: 25 pages (21-page main text, 4-page appendix), 18 figures, submitted to Ap

    The orbital motion of the Quintuplet cluster - a common origin for the Arches and Quintuplet clusters?

    Get PDF
    We investigate the orbital motion of the Quintuplet cluster near the Galactic center with the aim of constraining formation scenarios of young, massive star clusters in nuclear environments. Three epochs of adaptive optics high-angular resolution imaging with Keck/NIRC2 and VLT/NACO were obtained over a time baseline of 5.8 years, delivering an astrometric accuracy of 0.5-1 mas/yr. Proper motions were derived in the cluster reference frame and were used to distinguish cluster members from the majority of field stars. Fitting the cluster and field proper motion distributions with 2D gaussian models, we derive the orbital motion of the cluster for the first time. The Quintuplet is moving with a 2D velocity of 132 +/- 15 km/s with respect to the field along the Galactic plane, which yields a 3D orbital velocity of 167 +/- 15 km/s when combined with the previously known radial velocity. From a sample of 119 stars measured in three epochs, we derive an upper limit to the velocity dispersion in the core of the Quintuplet cluster of sigma_1D < 10 km/s. Knowledge of the three velocity components of the Quintuplet allows us to model the cluster orbit in the potential of the inner Galaxy. Comparing the Quintuplet's orbit with the Arches orbit, we discuss the possibility that both clusters originated in the same area of the central molecular zone. [abridged]Comment: 40 pages, 12 figures, accepted for publication in Ap

    Circumstellar discs in Galactic centre clusters: Disc-bearing B-type stars in the Quintuplet and Arches clusters

    Full text link
    We investigate the circumstellar disc fraction as determined from L-band excess observations of the young, massive Arches and Quintuplet clusters residing in the central molecular zone of the Milky Way. The Quintuplet cluster was searched for L-band excess sources for the first time. We find a total of 26 excess sources in the Quintuplet cluster and 21 in the Arches cluster, of which 13 are new detections. With the aid of proper motion membership samples, the disc fraction of the Quintuplet cluster was derived for the first time to be 4.0 +/- 0.7%. There is no evidence for a radially varying disc fraction in this cluster. In the case of the Arches cluster, a disc fraction of 9.2 +/- 1.2% approximately out to the cluster's predicted tidal radius, r < 1.5 pc, is observed. This excess fraction is consistent with our previously found disc fraction in the cluster in the radial range 0.3 < r < 0.8 pc. In both clusters, the host star mass range covers late A- to early B-type stars, 2 < M < 15 Msun, as derived from J-band photospheric magnitudes. We discuss the unexpected finding of dusty circumstellar discs in these UV intense environments in the context of primordial disc survival and formation scenarios of secondary discs. We consider the possibility that the L-band excess sources in the Arches and Quintuplet clusters could be the high-mass counterparts to T Tauri pre-transitional discs. As such a scenario requires a long pre-transitional disc lifetime in a UV intense environment, we suggest that mass transfer discs in binary systems are a likely formation mechanism for the B-star discs observed in these starburst clusters.Comment: 47 pages, 22 figures, accepted by A&

    An Optical Search for New Outbursting Low Mass X-Ray Binaries

    Full text link
    Transient Low-Mass X-ray binaries (LMXBs) are discovered largely by X-ray and gamma-ray all-sky monitors. The X-ray outburst is also accompanied by an optical brightening, which empirically can precede detection of X-rays. Newly sensitive optical synoptic surveys may offer a complementary pathway for discovery, and potential for insight into the initial onset and propagation of the thermal instability that leads to the ionization of the accretion disk. We use the Zwicky Transient Facility (ZTF) alert stream to perform a comprehensive search at optical wavelengths for previously undiscovered outbursting LMXBs. Our pipeline first crossmatches the positions of the alerts to cataloged X-ray sources, and then analyzes the 30-day lightcurve of matched alerts by thresholding on differences with an 8-day exponentially weighted moving average. In addition to an nineteen month-long live search, we ran our pipeline over four years of ZTF archival data, recovering 4 known LMXBs. We also independently detected an outburst of MAXI J1957+032 in the live search and found the first outburst of Swift J1943.4+0228, an unclassified X-ray transient, in 10 years. Using Monte Carlo simulations of the Galactic LMXB population, we estimate that 29% of outbursting LMXBs are detectable by ZTF and that 4.4% of LMXBs would be present in the crossmatched X-ray catalogs, giving an estimated Galactic population of 3390−1930+39803390^{+3980}_{-1930}. We estimate that our current pipeline can detect 1.3% of all outbursting LMXBs, including those previously unknown, but that Rubin Observatory's Legacy Survey of Space and Time (LSST) will be able to detect 43% of outbursting LMXBs.Comment: 17 pages, 10 figures, Accepted for publication in Ap

    The Quintuplet Cluster: Extended Structure and Tidal Radius

    Get PDF
    The Quintuplet star cluster is one of only three known young (<10<10 Myr) massive (M >104>10^4 M⊙_\odot) clusters within ∼100\sim100 pc of the Galactic Center. In order to explore star cluster formation and evolution in this extreme environment, we analyze the Quintuplet's dynamical structure. Using the HST WFC3-IR instrument, we take astrometric and photometric observations of the Quintuplet covering a 120′′×120′′120''\times120'' field-of-view, which is 1919 times larger than those of previous proper motion studies of the Quintuplet. We generate a catalog of the Quintuplet region with multi-band, near-infrared photometry, proper motions, and cluster membership probabilities for 10,54310,543 stars. We present the radial density profile of 715715 candidate Quintuplet cluster members with M≳4.7M\gtrsim4.7 M⊙_\odot out to 3.23.2 pc from the cluster center. A 3σ3\sigma lower limit of 33 pc is placed on the tidal radius, indicating the lack of a tidal truncation within this radius range. Only weak evidence for mass segregation is found, in contrast to the strong mass segregation found in the Arches cluster, a second and slightly younger massive cluster near the Galactic Center. It is possible that tidal stripping hampers a mass segregation signature, though we find no evidence of spatial asymmetry. Assuming that the Arches and Quintuplet formed with comparable extent, our measurement of the Quintuplet's comparatively large core radius of 0.62−0.10+0.100.62^{+0.10}_{-0.10} pc provides strong empirical evidence that young massive clusters in the Galactic Center dissolve on a several Myr timescale.Comment: 25 pages (21-page main text, 4-page appendix), 18 figures, submitted to Ap

    Blanco DECam Bulge Survey (BDBS) IV: Metallicity Distributions and Bulge Structure from 2.6 Million Red Clump Stars

    Full text link
    We present photometric metallicity measurements for a sample of 2.6 million bulge red clump stars extracted from the Blanco DECam Bulge Survey (BDBS). Similar to previous studies, we find that the bulge exhibits a strong vertical metallicity gradient, and that at least two peaks in the metallicity distribution functions appear at b < -5. We can discern a metal-poor ([Fe/H] ~ -0.3) and metal-rich ([Fe/H] ~ +0.2) abundance distribution that each show clear systematic trends with latitude, and may be best understood by changes in the bulge's star formation/enrichment processes. Both groups exhibit asymmetric tails, and as a result we argue that the proximity of a star to either peak in [Fe/H] space is not necessarily an affirmation of group membership. The metal-poor peak shifts to lower [Fe/H] values at larger distances from the plane while the metal-rich tail truncates. Close to the plane, the metal-rich tail appears broader along the minor axis than in off-axis fields. We also posit that the bulge has two metal-poor populations -- one that belongs to the metal-poor tail of the low latitude and predominantly metal-rich group, and another belonging to the metal-poor group that dominates in the outer bulge. We detect the X-shape structure in fields with |Z| > 0.7 kpc and for stars with [Fe/H] > -0.5. Stars with [Fe/H] < -0.5 may form a spheroidal or "thick bar" distribution while those with [Fe/H] > -0.1 are strongly concentrated near the plane.Comment: 26 pages, 22 figures, accepted for publication in MNRAS; the full data table is very long so only a stub table has been provided here; the full electronic table will be provided through MNRAS upon publication, but early access to the full table will be granted upon request to the author
    • …
    corecore