238 research outputs found

    Trivalent scandium, yttrium and lanthanide complexes with thia-oxa and selena-oxa macrocycles and crown ether coordination

    No full text
    Complexes of the oxa-thia macrocycles [18]aneO4S2, [15]aneO3S2 and the oxa-selena macrocycle [18]aneO4Se2 (L) of types [MCl2(L)]FeCl4 (M = Sc or Y) were prepared from [ScCl3(thf)3] or [YCl2(THF)5][YCl4(THF)2] and the ligand in anhydrous MeCN, using FeCl3 as a chloride abstractor. The [MI2(L)]I, [LaI3(L)] and [LuI2(L)]I have been prepared from the ligands and the appropriate anhydrous metal triiodide in MeCN. Complexes of type [LaI3(crown)] and [LuI2(crown)]I (crown = 18-crown-6, 15-crown-5) were made for comparison. Use of the metal iodide results in complexes with high solubility compared to the corresponding chlorides, although also with increased sensitivity to moisture. All complexes were characterised by microanalysis, IR, (1)H, (45)Sc and (77)Se NMR spectroscopy as appropriate. X-ray crystal structures are reported for [ScCl2([18]aneO4S2)][FeCl4], [ScI2([18]aneO4S2)]I, [YCl2(18-crown-6)]3[Y2Cl9], [YCl2([18]aneO4S2)][FeCl4], [LaI3(15-crown-5)], [LaI2(18-crown-6)(MeCN)]I, [LuI(18-crown-6)(MeCN)2]I2, [Lu(15-crown-5)(MeCN)2(OH2)]I3, [LaI3([18]aneO4S2)], [LaI([18]aneO4S2)(OH2)]I2, [LaI3([18]aneO4Se2)] and [LuI2([18]aneO4Se2)]I. In each complex all the neutral donor atoms of the macrocycles are coordinated to the metal centre, showing very rare examples of these oxophilic metal centres coordinated to thioether groups, and the first examples of coordinated selenoether donors. In some cases MeCN or adventitious water displaces halide ligands, but not the S/Se donors from La or Lu complexes. A complex of the oxa-tellura macrocycle [18]aneO4Te2, [ScCl2([18]aneO4Te2)][FeCl4] was isolated, but is unstable in MeCN solution, depositing elemental Te. YCl3 and 18-crown-6 produced [YCl2(18-crown-6)]3[Y2Cl9], the asymmetric unit of which contains two cations with a trans-YCl2 arrangement and a third with a cis-YCl2 group

    Virtual reference feedback tuning for linear discrete-time systems with robust stability guarantees based on set membership

    Get PDF
    In this paper we propose a novel methodology that allows to design, in a purely data-based fashion and for linear single-input and single-output systems, both robustly stable and performing control systems for tracking piecewise constant reference signals. The approach uses both (i) Virtual Reference Feedback Tuning for enforcing suitable performances and (ii) the Set Membership framework for providing a-priori robust stability guarantees. Indeed, an uncertainty set for the system parameters is obtained through Set Membership identification, where an algorithm based on the scenario approach is proposed to estimate the inflation parameter in a probabilistic way. Based on this set, robust stability conditions are enforced as Linear Matrix Inequality constraints within an optimization problem whose linear cost function relies on Virtual Reference Feedback Tuning. To show the generality and effectiveness of our approach, we apply it to two of the most widely used yet simple control schemes, i.e., where tracking is achieved thanks to (i) a static feedforward action and (ii) an integrator in closed-loop. The proposed method is not fully direct due to the Set Membership identification. However, the uncertainty set is used with the only objective of providing robust stability guarantees for the closed-loop system and it is not directly used for the performances optimization, which instead is totally based on data. The effectiveness of the developed method is demonstrated with reference to two simulation examples. A comparison with other data-driven methods is also carried out

    Oii-web: An interactive online programming contest training system

    Get PDF
    In this paper we report our experience, related to the online training for the Italian and International Olympiads in Informatics. We developed an interactive online system, based on CMS, the grading system used in several major programming contests including the International Olympiads in Informatics (IOI), and used it in three distinct context: training students for the Italian Olympiads in Informatics (OII), training teachers in order to be able to assist students for the OII, and training the Italian team for the IOI. The system, that is freely available, proved to be a game changer for the whole italian olympiads in informatics ecosystem: in one year, we almost doubled the participation to OII, from 13k to 21k secondary school students. The system is developed basing on the Contest Management System (CMS, http://cms- dev.github.io/), so it is highly available to extensions supporting, for instance, the pro- duction of feedback on problems solutions submitted by trainees. The system is also freely available, with the idea of allowing for support to alternative necessities and developmen

    Advanced control based on Recurrent Neural Networks learned using Virtual Reference Feedback Tuning and application to an Electronic Throttle Body (with supplementary material)

    Full text link
    In this paper the application of Virtual Reference Feedback Tuning (VRFT) for control of nonlinear systems with regulators defined by Echo State Networks (ESN) and Long Short Term Memory (LSTM) networks is investigated. The capability of this class of regulators of constraining the control variable is pointed out and an advanced control scheme that allows to achieve zero steady-state error is presented. The developed algorithms are validated on a benchmark example that consists of an electronic throttle body (ETB)

    Data-based control design for output-error linear discrete-time systems with probabilistic stability guarantees

    Get PDF
    In this letter we propose a novel method for direct data-based design of an output feedback controller for output-error processes in the single-input-single-output case. We consider a finite number of input/output data points collected from the system. Based on them, we define a set of state-space perturbed models consistent with data, where a bound on the disturbance is obtained by scenario optimization, and the structural properties of the models in this set are theoretically analyzed. This leads to a linear matrix inequality for the design of the feedback control law with probabilistic asymptotic stability guarantees. A simulated non-minimum phase system illustrates the approach.</p

    An incremental input-to-state stability condition for a generic class of recurrent neural networks

    Full text link
    This paper proposes a novel sufficient condition for the incremental input-to-state stability of a generic class of recurrent neural networks (RNNs). The established condition is compared with others available in the literature, showing to be less conservative. Moreover, it can be applied for the design of incremental input-to-state stable RNN-based control systems, resulting in a linear matrix inequality constraint for some specific RNN architectures. The formulation of nonlinear observers for the considered system class, as well as the design of control schemes with explicit integral action, are also investigated. The theoretical results are validated through simulation on a referenced nonlinear system

    On the exact electric and magnetic fields of an electric dipole

    Full text link
    We derive from Jefimenko's equations a multipole expansion in order to obtain the exact expressions for the electric and magnetic fields of an electric dipole with an arbitrary time dependence. A few comments are also made about the usual expositions found in most common undergraduate and graduate textbooks as well as in the literature on this topic

    ERR2 and ERR3 promote the development of gamma motor neuron functional properties required for proprioceptive movement control

    Get PDF
    The ability of terrestrial vertebrates to effectively move on land is integrally linked to the diversification of motor neurons into types that generate muscle force (alpha motor neurons) and types that modulate muscle proprioception, a task that in mammals is chiefly mediated by gamma motor neurons. The diversification of motor neurons into alpha and gamma types and their respective contributions to movement control have been firmly established in the past 7 decades, while recent studies identified gene expression signatures linked to both motor neuron types. However, the mechanisms that promote the specification of gamma motor neurons and/or their unique properties remained unaddressed. Here, we found that upon selective loss of the orphan nuclear receptors ERR2 and ERR3 (also known as ERR beta, ERR gamma or NR3B2, NR3B3, respectively) in motor neurons in mice, morphologically distinguishable gamma motor neurons are generated but do not acquire characteristic functional properties necessary for regulating muscle proprioception, thus disrupting gait and precision movements. Complementary gain-of-function experiments in chick suggest that ERR2 and ERR3 could operate via transcriptional activation of neural activity modulators to promote a gamma motor neuron biophysical signature of low firing thresholds and high firing rates. Our work identifies a mechanism specifying gamma motor neuron functional properties essential for the regulation of proprioceptive movement control
    • …
    corecore