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a b s t r a c t

In this paper we propose a novel methodology that allows us to design, in a purely data-based
fashion and for linear single-input and single-output systems, both robustly stable and performing
control systems for tracking piecewise constant reference signals. The approach uses both (i) virtual
reference feedback tuning for enforcing suitable performance and (ii) the set membership framework
for providing a-priori robust stability guarantees. Indeed, an uncertainty set for the system parameters
is obtained through set membership identification, where an algorithm based on the scenario approach
is proposed to estimate the inflation parameter in a probabilistic way. Based on this set, robust
stability conditions are enforced as linear matrix inequality constraints within an optimization problem
whose linear cost function relies on virtual reference feedback tuning. To show the generality and
effectiveness of our approach, we apply it to two of the most widely used yet simple control schemes,
i.e., where tracking is achieved thanks to (i) a static feedforward action and (ii) an integrator in
closed-loop.

The proposed method is not direct due to the set membership identification. However, the
uncertainty set is used with the objective of providing robust stability guarantees for the closed-loop
system and it is not used for the definition of the cost function, which instead is based on data. The
effectiveness of the method is shown with reference to three simulation examples. A comparison with
other data-driven methods is carried out.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In automation and control, data-based techniques are becom-
ng increasingly popular (Hou & Wang, 2013) since they allow
ne to design controllers that lead to performing control sys-
ems with moderate time and computational effort. Data-based
ontroller design methods can be divided in indirect and direct
nes. The former methods aim at first identifying a model of the
lant, based on which the controller is designed (Bugliari Arme-
io et al., 2019). The latter methods aim at directly identifying
he controller through optimization from a previously selected
ontroller class (Campi et al., 2000). Notably, some algorithms
ecently proposed in the literature bridge the gap between these
wo categories, proposing hybrid approaches that exploit some
dvantages of both direct and indirect methods: identification
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was recommended for publication in revised form by Associate Editor Jun Liu
under the direction of Editor Sophie Tarbouriech.
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for control (Hjalmarsson, 2005), dual control (Feldbâum, 1963),
control-oriented identification (Formentin & Chiuso, 2018), and
regularized data-enabled predictive control (Dörfler, Coulson &
Markovsky, 2022).

Among direct methods, virtual reference feedback tuning
(VRFT) has gained wide popularity due to its simplicity. The main
idea behind VRFT is that it is possible to identify, from available
data, a regulator model that allows one to make the closed-
loop system transfer function between the output reference and
the current system output as close as possible to a desired
one (i.e., the reference model). It has been first introduced for
linear controller design (Campi et al., 2002) and has later been
extended and applied to the nonlinear setup (Campi & Savaresi,
2006; D’Amico et al., 2022). However, especially if the controller
identification results are poor and the obtained regulator is far
from the ideal one, the resulting feedback system may display
bad performance and even instability.

Indeed, one of the major issues in VRFT concerns the possi-
bility of providing stability guarantees for the feedback system.
While, to the best of the authors’ knowledge, no existing VRFT-
based methods guarantee stability by design, in Campi et al.
(2000), Chiluka et al. (2021), Rojas and Vilanova (2011), Sala
and Esparza (2005a, 2005b) a-posteriori validation tests, aiming
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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t verifying the closed-loop stability, have been proposed for
RFT. Similar ideas have been recently employed in the data-
riven control literature (Cha et al., 2014; Dehghani et al., 2009;
onçalves da Silva et al., 2020) in case of more general control
ystems.
Other model reference approaches devised for the linear set-

ing (Battistelli et al., 2018; Selvi et al., 2021; Van Heusden et al.,
011) propose sufficient conditions for closed-loop stability (to
e included directly in the control design phase) based on small-
ain arguments. Alternatively, the behavioral approach inspired
y the Willems’ fundamental lemma (Willems et al., 2005) has
aved the way to a number of learning-based approaches. On the
ne hand, it has been used for the inclusion of data-dependent
inear matrix inequalities (LMIs) (De Persis & Tesi, 2019) for pro-
iding closed-loop stability guarantees in direct model-reference
ontrol (Breschi et al., 2021), for the design of linear quadratic
egulators (Dörfler, Tesi & De Persis, 2022), and in case of noisy
ata (Bisoffi et al., 2021; De Persis & Tesi, 2021). On the other
and, it has been employed for data-enabled predictive control
mplementations (Berberich et al., 2021, 2022; Coulson et al.,
019, 2021). Finally, in case of nonlinear systems, methods for
obust control from data have also been provided (Guo et al.,
021; Novara et al., 2014).
In this paper we propose a novel methodology that allows

ne to design, in a purely data-based fashion, both robustly
table and performing controllers for tracking (piecewise con-
tant) reference signals. We will use the VRFT approach to confer
esired closed-loop performance but, contrarily to existing VRFT
ethods, we will guarantee closed-loop stability during the con-

roller design phase. This is done by providing two major original
ontributions, listed below.

• We define an uncertainty set for the system through the set
membership (SM) identification technique (e.g., see Lauri-
cella and Fagiano (2020), Milanese et al. (2013), Terzi et al.
(2019) and the references therein). An algorithm based on
the scenario approach (Campi & Garatti, 2011) is proposed
to carry out a SM identification of the uncertainty set with
probabilistic guarantees. Robust stability constraints are so
defined by means of appropriate LMIs (e.g., see Boyd et al.
(1993), De Oliveira et al. (1999), Kothare et al. (1996)).

• We reformulate the VRFT design cost function as an LMI
optimization problem, where the stability constraints devel-
oped above can be naturally included.

o show the generality and effectiveness of our methodology,
e apply it to two of the most widely used yet simple control
chemes, i.e., where tracking is achieved thanks to (i) a static
eedforward action and (ii) an integrator in closed-loop.

One of the merits of our approach is that a numerically well
osed LMI optimization problem allows us to design the con-
roller. Note that this approach may be classified as an hybrid one,
onsisting of both an indirect design part (SM) and a direct one
VRFT). Note that, however, the SM identification is conducted
olely to define a set of models compatible with the data, for ro-
ust stability guarantees, and not to identify the system based on
hich the whole control design is carried out, contrarily to classic

ndirect methods such as the one proposed in Terzi et al. (2019),
here a learning-based model predictive control formulation is
roposed for linear systems. On the other hand, with respect to
lassic VRFT, our method has the merit to provide theoretical
tability conditions, by only enforcing linear constraints on the
ontroller gain in the design phase. The uncertainty set is indeed
sed with the objective of providing stability guarantees for the
losed-loop system but it is not used for the definition of the
ost function, which instead is based on data, as in classic VRFT
ethods.
2

Furthermore, a probabilistic relaxation of the method is also
proposed to cope with the possible conservativeness of the robust
stability condition and with scalability issues that may arise in
case of high-order systems.

Note that in Cerone et al. (2017a, 2017b) a non-iterative di-
rect data-driven control approach which relies on SM errors-
in-variables identification techniques is proposed. However, it is
inspired by a different direct method, i.e., the correlation-based
tuning framework. Also, the SM identification approach is not
used to provide robust stability conditions for the closed-loop
system, but to define a feasible controller parameter set.

Our approach is validated on simulation examples such as a
minimum phase system and a non-minimum phase one. Compar-
isons with the classical VRFT (Campi et al., 2002) and the method
proposed in Battistelli et al. (2018) are also performed.

The paper is organized as follows: in Section 2 the control
problem is defined, while in Section 3 the SM identification
approach with probabilistic guarantees is described in details. In
Section 4, the developed algorithm is described with reference
to a control scheme with feedforward action, while in Section 5
the proposed approach is shown in case a control scheme with
explicit integral action is used. Also, Section 6 discusses the prob-
abilistic relaxation of the method, Section 7 shows the application
of the proposed algorithms to three simulation examples, while
conclusions are drawn in Section 8.

Notation. We denote with k the discrete-time index and with q
the forward shift operator (i.e., u(k+1) = qu(k), for a signal u(k)).
We indicate with F (q)u(k) the signal y(k) obtained by filtering the
ignal u(k) through a discrete-time system with transfer function
(q). Given a matrix R, the transpose is RT , the transpose of the
nverse is R−T . We denote with 0n,m a null matrix with n rows
nd m columns, and with 1n a column vector with all elements
qual to one and of dimension n, whereas In is the identity matrix

of dimension n. Moreover, |a|, a ∈ R, denotes the absolute value
f a real number a, ∥F (q)∥ =

√
1
2π

∫ π

−π
|F (ejω)|2 dω the 2-norm of

a discrete-time linear transfer function F (q), E [X] the expected
alue of a random variable X , P {A} the probability of an event

A, and P {A|B} the conditional probability of an event A given an
event B.

2. Problem statement

We consider a discrete-time linear-time-invariant (LTI) single-
input and single-output (SISO) system S of order n described by
the input–output representation:{
z(k + 1) = θ oT φ(k)
y(k) = z(k) + d(k)

, (1)

where the regressor vector φ(k) ∈ R2n is defined as

φ(k) =
[
z(k) . . . z(k − n + 1) u(k) u(k − 1) . . .

. . . u(k − n + 1)
]T

. (2)

n (1), u is the manipulable input, z the ‘‘nominal’’ output, d an
dditive measurement noise, and y the measured output. Also,
o

=
[
θ o
1 . . . θ o

2n

]T
∈ R2n is the vector of unknown system

arameters. We make the following assumptions on the system.

ssumption 1.
- The system (1) is asymptotically stable;
- The static gain from u to z is different from zero;
- u(k) ∈ U ⊂ R for all k ≥ −n + 1, where U is compact;
- |d(k)| ≤ d̄ for all k ≥ −n + 1, where d̄ > 0 is known;
- The system order n is known. □
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Some remarks are in order concerning Assumption 1. Firstly,
unstable plants can be addressed by means of a cascade con-
trol architecture, provided that a first stabilizing (possibly low-
performing) feedback controller is available, e.g., it can be ob-
tained using heuristic methods (Arora et al., 2011). Also, it is
worth remarking that, in case the values of the noise bound
d̄ and of the system order n are not known a priori, they can
be estimated from data according to the procedures proposed
in Lauricella and Fagiano (2020). Alternatively, the system order
n can also be estimated from data using subspace identifica-
tion methods (Van Overschee & De Moor, 2012), or the Akaike’s
information criterion (Stoica & Selen, 2004).

The objective of this work is to propose a novel totally data-
driven control design approach that enables to devise a controller
that

(i) provides closed-loop system robust asymptotic stability
guarantees;

(ii) allows us to achieve perfect asymptotic tracking of con-
stant reference signals;

(iii) makes the feedback control system as similar as possible
to a given reference model of interest M having, as re-
quirement, an input–output delay equal to the one of the
system S.

e assume that some input–output data, obtained from exper-
ments on the system S with a persistently exciting input, are
vailable. The main rationale behind the proposed method is
ased on the following steps.
Based on the available data, a convex uncertainty set is first

earned by resorting to the SM identification approach (Milanese
t al., 2013) as discussed in Section 3.
As discussed in the introduction, in this paper we will con-

ider two most notable control configuration, showing that our
pproach allows one to design efficient data-based controllers in
oth of them: (i) a state feedback one with feedforward action
n Section 4, and (ii) a dynamic one endowed with an integrator
n Section 5. In both of them, the controller parameters will be
omputed by applying the VRFT approach. As discussed in Campi
t al. (2002), the objective of VRFT is to identify a controller such
hat the resulting closed-loop system is as similar as possible to a
iven reference closed-loop model M. In particular, the following

cost function must be minimized:

JMR(θC ) = ∥(M(q) − MθC (q))W (q)∥2, (3)

where M(q) is the transfer function of the reference closed-loop
model, MθC (q) is the transfer function of the adopted control sys-
tem (where θC represents the controller free parameter vector),
and W (q) is a weighting function chosen by the user. As discussed
in Campi et al. (2002), the cost function (3) cannot be minimized
since a description of the system S , necessary to compute MθC (q),
is not available.

Importantly, ad-hoc constraints based on the learned uncer-
tainty set will be enforced on the parameter θC to guarantee
asymptotic stability of the control scheme. This will be done
robustly with respect to all possible system parameterizations,
using suitable LMIs (De Oliveira et al., 1999).

3. Set membership identification with probabilistic guaran-
tees

The objective of this section is to employ SM identification
to compute the set of parameters, compatible with the avail-
able data, of a class of discrete-time systems of order n of the
type (1). We refer to Milanese et al. (2013), Terzi et al. (2019)
for details on the SM identification method and theory. In Sec-

tion 3.1 we recall the main procedure to adopt, while in the

3

subsequent Section 3.2 we propose a novel method, based on the
scenario approach (Campi & Garatti, 2011), to inflate the size of
the so-obtained parameter set in such a way to guarantee, with
a prescribed probability, that the real system parameter vector
belongs to it.

3.1. Uncertainty set: set membership identification

First of all note that, in view of Assumption 1, (1) lies in the
class of the prediction models of the type

y(k + 1) = θ T φ̂(k) + ξ (k) + d(k + 1), (4)

where

φ̂(k) =
[
y(k) . . . y(k − n + 1) u(k) u(k − 1) . . .

. . . u(k − n + 1)
]T

, (5)

nd where ξ (k) includes the effect of the measurement noise on
he predictions provided by (4). In fact, contrarily to the term φ(k)
efined in (2) and used in (1), the term φ̂(k), defined in (5) and
sed in (4), contains noisy measurements.
We assume that a finite number Nd of output/regressor data

airs (y(k + 1), φ̂(k)) is available, for k = 0, . . . ,Nd − 1. As a
echnical assumption, we consider the system parameters to lie
ithin a compact set Ω ⊂ R2n.
At this point, an estimate λ of the prediction error upper

bound is computed by solving the following linear programming
(LP) optimization problem:

λ = min
θ∈Ω,λ≥0

λ

subject to (6)

|y(k + 1) − θ T φ̂(k)| ≤ λ + d̄ k = 0, . . . ,Nd − 1.

hen, it is possible to define the feasible parameter set (FPS)
(α), i.e., the set of parameter values consistent with all the prior

nformation and the available data, as follows:

(α) =
{
θ ∈ Ω : |y(k + 1) − θ T φ̂(k)| ≤ αλ + d̄,

for all k = 0, . . . ,Nd − 1
}
. (7)

The value λ is inflated by a scalar parameter α > 1 to compensate
for the uncertainty caused by the use of a finite number of
measurements. With a sufficiently large number of exciting data
points, a practical approach is often to set the coefficient α ≃ 1.
However, a theoretically sound value of α guaranteeing that θ o

∈

Θ(α) with a prescribed probability, can be computed according
to the novel procedure introduced in Section 3.2.

Since the constraints in (7) are linear inequalities, we can
compute the nV vertices θV

1 , . . . , θV
nV of the convex hull defining

the FPS (Avis et al., 2009). It follows that, for all θ ∈ Θ(α), there
exists a set of non-negative real numbers γ1, . . . , γnV such that∑nV

i=1 γi = 1 and

θ =

nV∑
i=1

γiθ
V
i . (8)

Note that, for high-order systems, the definition of θV
1 , . . . , θ

V
nV may

e computationally expensive. Simpler, even if more conserva-
ive, approximations of the set Θ(α) can be considered, e.g., its
inimum volume outer box (Bemporad et al., 2004).

.2. Computation of the inflation parameter α based on the scenario
pproach

In Terzi et al. (2019), it is proved that limNd→∞ α = 1+.
owever, no methods have been proposed so far to estimate α
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n the realistic case of a finite number of data. While in Lauricella
nd Fagiano (2020) an invalidation test is suggested to evaluate
f the chosen value of α is too small by checking whether the
PS is empty for a validation experiment, it is not possible to
stablish whether the chosen α is too conservative. Therefore, this

section aims at providing a novel method based on the scenario
approach (Campi & Garatti, 2011) to estimate α in a sound way
to assess the probability and confidence that the real parameter
vector θ o belongs to the resultant FPS Θ(α).

We define ∆ = ΩS ×D ⊂ R3n+Nd , where ΩS is a set of infinite
cardinality containing parameters θ of LTI SISO asymptotically
stable systems of order n in the same representation as (1) and
D = [−d̄, d̄]Nd+n. We denote with δ =

[
θ T dT

]T any element
of ∆.

In view of Assumption 1, it is guaranteed that δo =
[
θ oT doT

]T
∈ ∆, where do

=
[
do(−n + 1) . . . do(0) . . . do(Nd)

]T
∈

Rn+Nd is the disturbance sequence of the real experiment. As
a technical assumption, we assume that ∆ is endowed with a
probability distribution Pδ . In particular, we denote with Pθ the
probability distribution of θ and with Pd the probability distribu-
tion of d(k), for all k = −n+1, . . . ,Nd, where θ and d(k) (for any k)
are assumed uncorrelated with each other. Both Pθ (as discussed
in Section 5 of Campi et al. (2000) and in the references therein)
and Pd can be estimated from data. To estimate Pd a preliminary
data collection experiment in a steady-state condition with zero
input (and zero ‘‘nominal’’ output) can be performed. A suitable
probability distribution can be selected from the analysis of the
histogram related to the measured output data, and the corre-
sponding parameters can be estimated, e.g., using the maximum
likelihood estimation (MLE). Algorithm 1 is proposed to estimate
α.
Algorithm 1 Estimation of α

(i) Choose a violation probability ϵ ∈ (0, 1), a confidence
parameter β ∈ (0, 1), and a number p of scenarios to be
discarded.
(ii) By bisection, find the minimum integer N solving∑p

j=0

(N
j

)
ϵ j(1 − ϵ)N−j

≤ β. (9)
(iii) Generate a sample (δ1, δ2, . . . , δN ) of N independent
random elements from (∆,Pδ), where δi =

[
θ iT diT

]T ,
i = 1, . . . ,N .
(iv) For each scenario δi, feed the fictitious system{

z i(k + 1) = θ iT φi(k)
yi(k) = z i(k) + di(k)

(10)

with the same input signal u(k) used in the real experiment,
starting from the same initial condition, and collect Nd
output/regressor data pairs.
(v) For each scenario δi, find the minimum αδi such that the
true parameter θ i

∈ Θδi (αδi ), where Θδi (αδi ) is the FPS of the
scenario δi.
(vi) Discard p scenarios corresponding to the ones with the
greatest αδi .
(vii) Among the remaining N − p scenarios, take the
maximum αδi , denoted α∗

p , and terminate.
(viii) If necessary, increase p, fix N and β , and go back to
step (vi), after finding the minimum ϵ solving (9) through
bisection.

The value α∗
p obtained through the algorithm corresponds to the

estimate of α to be used to properly define the FPS (7), i.e., Θ(α∗
p ).

ote that removing scenarios allows us to avoid too conservative
stimations of the inflation parameter α. In particular, step (viii)
s necessary to reduce α∗

p (at the price of an increase of the
iolation probability ϵ) in case the resultant FPS is too large
nd the subsequent robust stability problem is unfeasible. The
ollowing result holds.
 u

4

roposition 1. For all N ≥ 1 fulfilling (9), it holds that P{θ o
∈

(α∗
p )} ≥ 1 − ϵ with probability ≥ 1 − β . □

Proof. See the Appendix. ■

3.3. State-space representation of the system S

The uncertain system derived from the procedure sketched in
Section 3.1 can be recast in state-space as{
x(k + 1) = Ax(k) + Bu(k) + Bww(k)
y(k) = Cx(k)

, (11)

where

x(k) =
[
y(k) . . . y(k − n + 1) u(k − 1) . . .

. . . u(k − n + 1)
]T

∈ R2n−1, (12)

=

⎡⎢⎣ θ1 . . . θn θn+2 . . . θ2n
In−1 0n−1,1 0n−1,n−1

01,n 01,n−1
0n−2,n In−2 0n−2,1

⎤⎥⎦ ,

and B =
[
θn+1 01,n−1 1 01,n−2

]T , BT
w = C =

[
1 01,2n−2

]
.

Here, w(k) = ξ (k) + d(k + 1) depends upon the exogenous
disturbance d. Note that matrices A and B are uncertain but, in
view of (8)[
A B

]
=

nV∑
i=1

γi
[
Ai Bi

]
, (13)

where Ai and Bi, i = 1, . . . , nV , are defined as above based on the
known parameter vectors θV

i , i = 1, . . . , nV , defined based on the
SM procedure sketched in Section 3.1.

4. VRFT with robust stability guarantees: feedforward action

4.1. The control law

Given a (possibly time-varying) reference signal ȳ(k), the aim
of this section is to tune the uncertain parameters of the control
law

u(k) = ū(k) + K (x(k) − x̄(k)) (14)

in order to achieve the goals specified in Section 2. In (14),
ū(k) and x̄(k) are computed as the steady-state input and state,
respectively, corresponding to the reference ȳ(k) at each time
instant. To this respect, in this section the following assumption
is made.

Assumption 2. The static gain µ ∈ R from u to z of system (1)
is known. □

Note that the latter is a mild assumption since the static
gain µ can be easily estimated from data, potentially collected
through an independent experiment, e.g., step response. The ad-
vantage of Assumption 2 is that it allows us to compute ū(k)
and x̄(k) at each time instant as ū(k) = ρȳ(k) and x̄(k) =

ȳ(k) . . . ȳ(k) ρȳ(k) . . . ρȳ(k)
]T

= fȳ(k), where ρ = µ−1

nd

=
[
1T
n ρ1T

n−1

]T
∈ R2n−1. (15)

or notational compactness we write, from (14),

(k) = fK ȳ(k) + Kx(k), (16)

here fK = ρ − K f. The only tuning parameter in this case is
T

=
[
k1 . . . k2n−1

]T
∈ R2n−1, which will be obtained by

inimizing a suitable VRFT-based cost function (cf. (44) in the
ppendix). Note that the feedforward additive term fK ȳ(k) allows

s to achieve a zero steady-state error.
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.2. Controller design

In this section we discuss how to properly design the con-
roller parameter K in the control law (14) in order to solve the
roblem

min
K

JMR(K ), (17)

here JMR(K ) corresponds to (3) with θC = K . Note that, in our
etup, the noise d(k) is non-negligible and affects the system out-
ut. The presence of such noise could entail a biased definition of
he controller parameter, which may cause a deterioration of the
losed-loop performance. Therefore, the VRFT method will be ap-
lied by resorting to the instrumental variable approach (Campi
t al., 2002; Ljung, 1998) to remove the bias. To apply the in-
trumental variable (IV) approach, we need two different output
atasets (denoted y1(k) and y2(k)) obtained by means of two
xperiments performed on the plant (1) with the same input
equence, i.e., u(k), but each affected by a different noise sequence
denoted d1(k) and d2(k), respectively), for k = −n+ 1, . . . ,Nd. If
n additional experiment is not possible, a second output dataset
an be alternatively obtained after a plant identification phase,
s suggested in Campi et al. (2002) in Section 4.1. The following
ssumption is required.

ssumption 3. The signals u(k), d1(k), and d2(k) are uncorrelated
ith each other, where d1(k) and d2(k) are stationary zero-mean
rocesses. □

As done in Campi et al. (2000), the VRFT method requires to
efine a virtual reference sequence for each experiment i = 1, 2,
.e., r i(k) = M−1(q)yi(k), for all k = −n+1, . . . ,Nd −1. Moreover,
s explained in Campi et al. (2000), the data need to be filtered
sing an ad-hoc filter with transfer function F (q), which will be
efined later. The filtered data are defined as uF (k) = F (q)u(k)
nd, for i = 1, 2, yiF (k) = F (q)yi(k), r iF (k) = F (q)r i(k). Also, we de-
ine, for i = 1, 2 and for all k = 0, . . . ,Nd −1, xiF (k) = F (q)xi(k) =

yiF (k) . . . yiF (k − n + 1) uF (k − 1) . . . uF (k − n + 1)
]T .

Based on these sequences we can define, for each i = 1, 2,
ui
Nd

=
[
uF (0) − ūi

F (0) . . . uF (Nd − 1) − ūi
F (Nd − 1)

]T , where,
for all k = 0, . . . ,Nd − 1, ūi

F (k) = F (q)ūi(k) = ρr iF (k). Also, for
i = 1, 2, we need to define the matrix

xiNd
=

⎡⎢⎣ (xiF (0) − x̄iF (0))
T

...

(xiF (Nd − 1) − x̄iF (Nd − 1))T

⎤⎥⎦ ,

where, for all k = 0, . . . ,Nd − 1, x̄iF (k) = F (q)x̄i(k) = fr iF (k).
We finally define RNd =

1
2Nd

(
(x1Nd

)Tu2
Nd

+ (x2Nd
)Tu1

Nd

)
and

QNd =
1

2Nd

(
(x1Nd

)Tx2Nd
+ (x2Nd

)Tx1Nd

)
.

The following assumption, which is commonly verified under
ild identifiability conditions (e.g., the knowledge of the order
, and the use of a persistently exciting input), is necessary for
uaranteeing the existence of a solution to the VRFT-based opti-
ization problem, and is fulfilled in all the examples considered

n this paper.

ssumption 4. Matrix QNd is positive definite. □

The following theorem provides the main tool for control
esign.

heorem 1. The optimization problem

min
L,σ

σ (18)

ubject to
5

[
σ + 2LQ−1

Nd
RNd − RT

Nd
Q−1
Nd

GQ−1
Nd

RNd L

LT G

]
≽ 0, (19)

for Nd → +∞, is equivalent to (17) if we set, for any scalar γ > 0,

|F (ejω)|
2

=
|M(ejω)|2|MK (ejω)|

2
|W (ejω)|2

|fK |
2Φz(ω)

, (20)

= γQNd , (21)

here K = LG−1, and Φz(ω) is the spectral density of z(k).
Moreover if, for all i = 1, . . . , nV , there exist symmetric matrices

Pi such that[
Pi AiG + BiL

(AiG + BiL)T G + GT
− Pi

]
≻ 0, (22)

hen the closed-loop system is asymptotically stable for all θ ∈

(α∗
p ). □

roof. See the Appendix. ■

Firstly, the results are asymptotic (i.e., they hold for Nd →

∞), but they can be achieved with a sufficiently large number
f exciting data. Secondly, the filter F (q) in (20) cannot be realized
ince it depends on the system S. Nevertheless, in practice, it
an be implemented by approximating MK (q) ≃ M(q), and by
eglecting fK . Note that fK is only a scaling factor constant in the
requency domain. Note also that Φz(ω) can be estimated from
ata, e.g., thanks to the availability of two datasets y1(k) and y2(k)
enerated according to independent noise sequences. Therefore,
he following practicable approximation of the filter is proposed:

(q) =
(M(q))2W (q)

Z(q)
, (23)

here Z(q) is such that |Z(ejω)|2 = Φz(ω). Finally, setting G as in
21) may lead to an infeasible problem, especially in combination
ith the stability constraint (22). Hence, condition (21) can be
elaxed by defining the matrix G and scalar γ > 0 as free
ptimization variables and replacing (21) with the constraints:

G − γQNd + λg I2n−1 ≽ 0, (24a)

G + γQNd + λg I2n−1 ≽ 0, (24b)

here the scalar λg ≥ 0 has to be minimized with σ , through
user-defined weight c > 0 (cf. (25)). Based on the previous
onsiderations, Algorithm 2 is proposed.

Algorithm 2 FF-VRFT with robust stability guarantees
(i) Collect, with the same input, two input–output datasets
from the plant, i.e., u(k), y1(k), y2(k) for k = −n + 1, . . . ,Nd.
(ii) Compute the vertices θV

i , i = 1, . . . , nV , of Θ(α∗
p ) and the

corresponding state-space matrices Ai and Bi, i = 1, . . . , nV ,
via Algorithm 1 and the SM identification in Section 3.
(iii) Construct RNd and QNd using (23).
(iv) Solve the LMI optimization problem

minG,γ ,L,σ ,λg ,P1,...,PnV
σ + cλg (25)

subject to (22) for all i = 1, . . . , nV , (19), (24),
where G, P1, . . . , PnV are symmetric matrices.
(v) If feasible, compute K = LG−1.

4.2.1. Choice of the hyperparameters
Algorithm 2 requires a number of parameters and design

choices to be provided offline. The reference closed-loop model
M(q), the confidence parameter β , the violation probability ϵ,
nd the number p of scenarios to be discarded are user-defined.

Also, the weighting function W (q) is commonly chosen equal to
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Fig. 1. Control scheme.

if there is no frequency range specification for the closed-loop
ystem operation, whereas Z(q) can be estimated by an AR model,
hose order is selected so as to have a low unexplained output
ariance. Instead, the choice of the weight c in (25) is based
n a trade-off and does not affect the stability but may slightly
ffect the performance of the closed-loop system. In particular, a
arge value of c drives the optimization problem (18)–(19) to be
quivalent to (17) but provides less degrees of freedom to min-
mize σ . A small value of c does not guarantee the equivalence
f the optimization problems (18)–(19) and (17), which however
hare the same minimum point when stability constraints are not
mposed, i.e., K = RT

Nd
Q−1
Nd

, for Nd → +∞, under (20), and for any
≻ 0. On the other hand, it provides more degrees of freedom

n order to minimize σ . A practical suggestion is to set c = 10−3

s a starting point. If possible, the best advice is to test in closed-
oop the controllers obtained with c taken from a set of values
f different orders of magnitude, and take the best performing
ontroller as the final one.

. VRFT with robust stability guarantees: explicit integral ac-
ion

.1. The control law

In this section we propose a method for the tuning of the
ontroller gains K and g in the control system depicted in Fig. 1
for tracking a possibly time-varying reference signal ȳ(k). In this
scheme, an explicit integral action is introduced to achieve a
zero steady-state error. The block ‘‘INT ’’ denotes a unitary-gain
integrator, with equation v(k) = v(k − 1) + e(k), where e(k) =

¯(k) − y(k).
The main advantage of this control scheme with respect to the

ne in Section 4 is that Assumption 2 is not required, i.e., the
tatic gain does not need to be estimated, and an additional ex-
eriment with a step input is not necessary. Moreover, the pres-
nce of the integrator provides robustness to achieve zero steady-
tate error in case of gain estimation errors or non-idealities such
s mild nonlinearities, constant disturbances or biases.
The controller equations can be written as{

η(k + 1) = η(k) + e(k)
u(k) = Kx(k) + g(η(k) + e(k))

, (26)

here η(k) ∈ R is the state of the integrator, whereas K T
=

k1 . . . k2n−1
]T

∈ R2n−1 and g ∈ R are tuning parameters.

.2. Controller design

In this section we discuss how to design the controller param-
ters K and g in the controller equations (26) in order to solve

min JMR(K , g), (27)

K ,g

6

here JMR(K , g) is the model reference cost function (3) with
C =

[
K g

]
. As done in Section 4, also in this section we employ

he IV approach, requiring the availability of the two datasets
reviously defined and consistent with Assumption 3. The cor-
esponding virtual reference sequences are r i(k) = M−1(q)yi(k),
or i = 1, 2 and for all k = −n + 1, . . . ,Nd − 1. Therefore,
he virtual error sequences can be defined as ẽi(k) = r i(k) −
i(k). After defining a filter F (q) (to be later specified) and the
ransfer function D(q) = 1 − q−1, we can define the sequences
DF (k) = D(q)F (q)u(k), yiDF (k) = D(q)F (q)yi(k), ẽiF (k) = F (q)ẽi(k),
nd xiDF (k) =

[
yiDF (k) . . . yiDF (k − n + 1) uDF (k − 1) . . .

uDF (k − n + 1)
]T . We also define, for i = 1, 2, uNd =

uDF (0) . . . uDF (Nd − 1)
]T and

i
Nd

=

⎡⎢⎣ xiDF (0)
T ẽiF (0)

...
...

xiDF (Nd − 1)T ẽiF (Nd − 1)

⎤⎥⎦ .

e finally define RNd =
1

2Nd

(
(x1Nd

+ x2Nd
)TuNd

)
, QNd =

1
2Nd(

(x1Nd
)Tx2Nd

+ (x2Nd
)Tx1Nd

)
, RNd = E−1RNd , and QNd = E−1QNdE

−T ,
here

=

[
I2n−1 02n−1,1
−C 1

]
.

Also in this case Assumptions 3 and 4 are considered valid. The
following theorem can be proved.

Theorem 2. The optimization problem

min
L,σ

σ (28)

subject to[
σ + 2LQ−1

Nd
RNd − RT

Nd
Q−1

Nd
GQ−1

Nd
RNd L

LT G

]
≽ 0, (29)

for Nd → +∞, is equivalent to (27) if, for any scalar γ > 0,

|F (ejω)|
2

=
|M(ejω)|2|MKg (ejω)|

2
|W (ejω)|2

|g|
2Φz(ω)

, (30)

= γQNd , (31)

here

K g
]

= LG−1E−1, (32)

nd Φz(ω) is the spectral density of z(k).
Moreover if, for all i = 1, . . . , nV , there exist symmetric matrices

i such that[
Pi AiG + BiL

(AiG + BiL)T G + GT
− Pi

]
≻ 0, (33)

here Ai =

[
Ai 02n−1,1
−C 1

]
and Bi =

[
Bi
0

]
, then the closed-loop

ystem is asymptotically stable for all θ ∈ Θ(α∗
p ). □

roof. See the Appendix. ■

With the same arguments presented in Section 4.2, the prac-
icable approximation of the filter (23) can be used also in this
ase. Moreover, condition (31) can be relaxed by using both G and
> 0 as free optimization variables and imposing the following

onstraints:

G − γQNd + λg I2n ≽ 0, (34a)

G + γQNd + λg I2n ≽ 0, (34b)
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here λg ≥ 0 must also be minimized together with σ , through
user-defined weight c > 0 (cf. (35)). Based on the previous

onsiderations, Algorithm 3 is proposed.

Algorithm 3 EI-VRFT with robust stability guarantees
(i) Collect, with the same input, two input–output datasets
from the plant, i.e., u(k), y1(k), y2(k) for k = −n + 1, . . . ,Nd.
(ii) Compute the vertices θV

i , i = 1, . . . , nV , of Θ(α∗
p ) and the

corresponding state-space matrices Ai and Bi, i = 1, . . . , nV ,
via Algorithm 1 and the SM identification in Section 3.
(iii) Construct RNd and QNd using (23).
(iv) Solve the LMI optimization problem

minG,γ ,L,σ ,λg ,P1,...,PnV
σ + cλg (35)

subject to (33) for all i = 1, . . . , nV , (29), (34),
where G, P1, . . . , PnV are symmetric matrices.
(v) If feasible, compute K and g as in (32).

6. Conservativeness and scalability issues: probabilistic relax-
ation

As well known, robustly-stabilizing methods may lead to con-
ervatism and infeasibility. Moreover, since the number of ver-
ices and constraints in Algorithms 2 and 3 grows exponentially
ith the system order, computational problems may arise in case
f large systems. We propose here a probabilistic relaxation of the
ethod to reduce conservatism and to reduce the computational
urden in case of large systems.
We formulate the algorithm with reference to the control

cheme with explicit integral action, but an analogous algorithm
an be devised for the control scheme with feedforward action.
s a technical assumption, we assume that the FPS Θ(α∗

p ) is en-
owed with a probability distribution Pθ , which can be estimated
s suggested in Section 3.2. Algorithm 4 is proposed and the
ubsequent result holds.

Algorithm 4 EI-VRFT with probabilistic stability guarantees
(i) Collect, with the same input, two input–output datasets
from the plant, i.e., u(k), y1(k), y2(k) for k = −n + 1, . . . ,Nd.
(ii) Choose a violation probability ϵ ∈ (0, 1) and a
confidence parameter β ∈ (0, 1).
(iii) By bisection, find the minimum integer N solving∑dn−1

j=0

(N
j

)
ϵ j(1 − ϵ)N−j

≤ β , (36)
where dn = 2n2

+ 3n + 2, and n is the system order.
(iv) Compute Θ(α∗

p ) via Algorithm 1 and the SM
identification in Section 3.
(v) Estimate Pθ as suggested in Section 3.2.
(vi) Generate a sample (θ1, θ2, . . . , θN ) of N independent
random elements from (Θ(α∗

p ),Pθ ).
(vii) Compute the state-space matrices Ai and Bi,
i = 1, . . . ,N , obtained using the scenarios θ i.
(viii) Construct RNd and QNd using (23).
(ix) Solve the LMI optimization problem

minL,P,σ ,λg σ + cλg (37)
subject to (29) and (34) (with P in place of G),[

P AiP + BiL
(AiP + BiL)T P

]
≻ 0

for all i = 1, . . . ,N , where P is a symmetric matrix, and
γ > 0, c > 0 are user-defined constants.
(x) If feasible, compute

[
K g

]
= LP−1E−1.

Corollary 1. For all N ≥ dn fulfilling (36), if the problem (37) is
feasible, with probability ≥ 1 − β , it holds that P{θ ∈ Θ(α∗

p ) :

he closed-loop system is asymptotically stable} ≥ 1 − ϵ. □

roof. See the Appendix. ■
7

Fig. 2. Scenario application: scenarios (blue dots), removed scenarios (red
crosses), α∗

p value (green dashed line).

7. Simulation results

The algorithms proposed in this paper are validated on three
simulation examples displaying different features.

7.1. Example 1: Minimum phase plant

The considered system, drawn from Terzi et al. (2019), corre-
sponds to the discretization of the asymptotically stable system
with continuous-time transfer function

P(s) =
Z(s)
U(s)

=
160

(s + 10)(s2 + 1.6s + 16)
, (38)

haracterized by a unitary gain and dominant complex poles with
atural frequency ωn = 4 and damping factor ξ = 0.2.
A sample time Ts = 0.125 s is chosen. The settling time of the

open-loop system is 50Ts = 6.25 s. The system is discretized by
means of the zero-order hold (ZOH) method: the corresponding
nominal parameter vector is θ o

=[
1.883 −1.276 0.2346 0.0367 0.1038 0.0179

]T and the
order is n = 3. An additive uniform random noise d acting in the
range [−0.1, 0.1] (i.e., d̄ = 0.1) affects the output z of the system.

Two datasets composed of Nd = 10000 output/regressor
data pairs (y(k + 1), φ̂(k)) are collected from the plant in open-
loop, with different noise realizations. The input signal is a pseu-
dorandom binary sequence (PRBS) in the range [−10, 10]. The
signal-to-noise ratio (SNR) is equal to 42.28 dB.

For the application of the SM method described in Section 3,
to estimate the conservative factor α∗

p accounting for the finite
dataset employed, Algorithm 1 is applied. Pθ is estimated ac-
cording to Campi et al. (2000, Section 5), while Pd is considered
uniform in the range [−d̄, d̄]. We choose a violation parameter
ϵ = 0.05, a confidence parameter β = 10−10, and the number of
scenarios to be discarded p = 20. Hence, the number of required
scenarios obtained by applying the bisection algorithm to (9) is
N = 1265. As a result, we obtain α∗

p = 1.1218. The corresponding
set Θ(α∗

p ) has 1406 vertices, where Ω is chosen as an hypercube
defined by the ∞-norm ∥θ∥∞ ≤ 1010.

In Fig. 2 the values αδi computed for each scenario i are
depicted. In Fig. 3 a validation test with new scenarios is carried
out. The percentage of scenarios which violate α∗

p is 1.581%, lower
than ϵ% = 5%. Note that the nominal parameter vector θ o

∈

Θ(α∗
p ).

In the following, a control design test is conducted with a
reference model M characterized by a first-order asymptotically
stable and unitary-gain system with equation yr (k) = −a1yr (k −

1)+b1r(k−1). It is denotedM10 and has settling time 10Ts = 1.25
s, being a1 = −0.6 and b1 = 0.4. YALMIP and the MOSEK
solver (Lofberg, 2004; MOSEK ApS, 2019) are used to solve the
LMI optimization problems in Algorithms 2 and 3.
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Fig. 3. Validation: scenarios (blue dots), nominal case (cyan circle), violated
scenarios (purple circles), α∗

p value (green dashed line). (For interpretation of
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Table 1
Spectral radius of the closed-loop system and FIT .
Case Nd d̄ ρ FIT (%)

FF-VRFT M10 104 0.1 0.8492 93.5919
FF-VRFT M10 103 0.1 0.7959 91.6139
FF-VRFT M10 104 0.5 0.8262 83.7788
EI-VRFT M10 104 0.1 0.7432 90.8898
EI-VRFT M10 103 0.1 0.8301 89.8916
EI-VRFT M10 104 0.5 0.8514 76.9341
PID-VRFT M10 104 0.1 0.8446 71.4590
UF M10 104 0.1 0.909 89.1269

We consider different cases for a better comparison. Namely,
e test Algorithms 2 (FF-VRFT) and 3 (EI-VRFT). We select for
oth the schemes W (q) = 1, c = 106 for FF-VRFT, and c =

0−3 for EI-VRFT. For the filter application, an estimate of Z(q) is
btained from the output signal of one experiment through the
dentification of a discrete-time AR model of order 5.

Moreover, the proposed algorithms are compared with a stan-
ard VRFT linear implementation (PID-VRFT). In particular, a PID
s tuned by means of the VRFT Toolbox (Carè et al., 2019), where
he optimal filter and the IV approach are applied as well.

Finally, a comparison is also carried out with the data-driven
ethod based on controller unfalsification (UF) proposed in Bat-

istelli et al. (2018), where a controller tuning procedure incor-
orating simple stability tests is suggested. Note that the method
n Battistelli et al. (2018) was extended in Selvi et al. (2021) to
ake into account the optimal choice of the reference models
hrough a non-convex optimization problem. However, to have
fair comparison, we use the same reference complementary

ensitivity functions considered in Algorithms 2 and 3 and in
RFT. Nevertheless, to apply the method, the choice of a suit-
ble reference control sensitivity function Q(q) is also required.
he following control sensitivity function is chosen: Q(q) =

1.5q2−2.37q+1.23
q2−0.8q+0.16

. Furthermore, the following class of controllers is
onsidered:

(q, κ) =
κ1q3 + κ2q2 + κ3q + κ4

(q − 1)(q2 + κ5q + κ6)
, (39)

here κ =
[
κ1 . . . κ6

]T is the vector of tuning parameters.
Accordingly, the maximum value of the weight (denoted with δ

in Battistelli et al. (2018)), for which the stability test is passed,
is equal to 0.95 in case of M10.

The computation times1 for solving the LMI optimization
problems at point (iv) of Algorithms 2 and 3 are tc = 14 s and

1 This elapsed time is obtained by the MATLAB
®

R2018b function tic toc
on a machine with processor Intel

®
Core™ i5 with 4 cores and 1.80 GHz.
8

Fig. 4. Measured output trajectories obtained with M10 . Black dashed line:
reference closed-loop trajectory; orange dotted line: output response in open-
loop; blue line: FF-VRFT; red line: EI-VRFT; golden line: PID-VRFT; green line:
UF. Note that the red and blue lines are superimposed on the black dashed one.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

tc = 18 s, respectively. Table 1 displays the spectral radius ρ

of the closed-loop system (e.g., see the state matrix (48) in the
Appendix). Moreover, to test the performance in closed-loop, the
following fitting index is calculated and reported in the table

FIT (%) = 100 ·

(
1 −

∥yr − y∥
∥yr − ȳr∥

)
∈ (−∞, 100], (40)

here yr is the reference model output sequence, y is the mea-
ured output sequence and ȳr is a vector with all the elements
qual to the mean value of the reference model output sequence
r . The fitting values achieved using a reduced dataset (i.e., Nd =

000), where α∗
p = 1.2357, and the one achieved using a larger

noise (i.e., d̄ = 0.5), where SNR = 28.3014 dB and α∗
p = 1.5841,

are also reported in the table. The same design choices previously
stated are made also in these cases.

For performance evaluation, in Figs. 4 and 5 we show the
reference tracking results obtained with reference model M10,
n terms of trajectories of the measured outputs y(k) and of
the control inputs u(k), respectively. By inspection of Fig. 4, it
possible to appreciate that, by using the methods proposed in
this paper, the control system results to be extremely reactive,
being the settling time very short. The best fitting is achieved in
case of FF-VRFT. An asymptotically stable closed-loop system and
a slightly underdamped response is achieved with the controller
unfalsification method. A slower response is achieved with the
standard VRFT linear implementation. Nevertheless, in general,
the standard VRFT implementation does not provide any a priori
closed-loop stability guarantee. Finally, note that, even if the filter
(23) is not applied, only a slightly slower response is obtained
as shown in D’Amico and Farina (2022a). From Fig. 5 we can see
that the reactiveness of the controller obtained with the proposed
methods seems to make the resulting control systems not capable
of properly attenuating the effect of high-frequency measurement
disturbances. A possible solution consists in the introduction of
regularization terms in the cost function, e.g., penalization terms
on the controller gains, as discussed in Zecevic and Siljac (2010).

7.2. Example 2: Non-minimum phase plant

We consider a second example which shows the effectiveness
of the proposed algorithms also in a more challenging scenario.
In particular, a non-minimum phase system is considered, corre-
sponding to the discretization of the asymptotically stable system
with continuous-time transfer function

P(s) =
Z(s)

=
160s − 80

, (41)

U(s) (s + 10)(s2 + 1.6s + 16)
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Fig. 5. Input trajectories obtained with M10 . Blue line: FF-VRFT; red line: EI-
RFT; golden line: PID-VRFT; green line: UF. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this
rticle.)

Table 2
Spectral radius of the closed-loop system and FIT .
Case Nd d̄ ρ FIT (%)

FF-VRFT M60 104 0.1 0.9387 51.7183
EI-VRFT M60 104 0.1 0.9406 51.2410
UF M60 104 0.1 0.9784 57.2788

characterized by a static gain µ = −0.5, the same poles of
38), and a real positive zero in 0.5. A sample time Ts = 0.125
is chosen. The system is discretized by means of the ZOH
ethod: the corresponding nominal parameter vector is θ o

=

1.883 −1.276 0.2346 0.7617 −0.346 −0.4948
]T

nd the order is n = 3. An additive uniform random noise d acting
n the range [−0.1, 0.1] (i.e., d̄ = 0.1) affects the output z of the
ystem.
Also in this case, two datasets composed of Nd = 10000

utput/regressor data pairs (y(k+1), φ̂(k)) are collected from the
lant in open-loop, with different noise realizations. The input
ignal is a PRBS in the range [−10, 10]. The SNR is equal to
3.6346 dB.
The same considerations and design choices made in Sec-

ion 7.1 for the application of Algorithm 1 hold also in this case.
e obtain the estimate α∗

p = 1.1007. The corresponding set
(α∗

p ) has 998 vertices. The percentage of scenarios which violate
∗
p is 1.9763%, lower than ϵ% = 5%. Note that the nominal
arameter vector θ o

∈ Θ(α∗
p ).

The following first-order asymptotically stable and unitary-
ain system, denoted with M60, is selected as reference model:
r (k) = −a1yr (k−1)+b1r(k−1), where a1 = −0.925, b1 = 0.075,
nd the settling time is 60Ts = 7.5 s. Since the inverse response of
he system cannot be avoided due to the positive real part zero
41) and the reference model is a minimum phase system, the
esign turns out to be challenging.
As for Example 1, a comparison between the performance

chieved with the proposed Algorithms 2 and 3, the standard
RFT-based PID tuning, and the UF method is performed. The
ethods are denoted with the same notation used in Section 7.1.
We select for both the control schemes c = 10−3 and W (q) =

, while Z(q) is estimated from the output signal of one exper-
ment through the identification of a discrete-time AR model of
rder 21. For the application of the UF method, the M60 comple-
entary sensitivity function is used and the following suitable

nput sensitivity is considered: Q(q) =
−0.09012q2+0.1439q−0.0738

q2−1.791q+0.801
.

The class of controllers (39) is taken into account also in this case.
In UF, the maximum value of the weight δ, for which the stability
test is passed, is equal to 0.05.

Table 2 displays the spectral radius ρ of the closed-loop sys-
tem and the fitting index (40). The computation times for solving
9

Fig. 6. Measured output trajectories obtained with M60 . Black dashed line:
reference closed-loop trajectory; blue line: FF-VRFT; red line: EI-VRFT; green
line: UF. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Input trajectories obtained with M60 . Blue line: FF-VRFT; red line: EI-
VRFT; green line: UF. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the LMI optimization problems at point (iv) of Algorithms 2 and
3 are tc = 10 s and tc = 14 s, respectively.

In Figs. 6 and 7 we show the reference tracking results ob-
tained with reference model M60, in terms of trajectories of the
measured outputs y(k) and of the control inputs u(k), respectively.
s well known (Sala & Esparza, 2005b), if the unstable zero is not
stimated and included in M60, an unstable closed-loop system is
btained with the standard VRFT-based PID implementation. Con-
ersely, asymptotically stable closed-loop systems are achieved
ith the other methods. A quite fast response follows from the
pplication of the proposed Algorithms 2 and 3. However, the best
esults in terms of fitting are obtained with the UF method, even
f, as evident from Fig. 6, its response is slightly underdamped.

.3. Example 3: system of order 7

To test the scalability of our approach, we consider a system
f order n = 7, whose corresponding nominal parameter vector
s θ o

=
[
−0.148 −0.635 −0.5239 −0.2772 −0.4438 −0.115 −

0.2601 0.5043 0.3338 0.9767 0.4389 0.1322 0.5916 0.4978
]T .

A sample time Ts = 1 s is chosen. The settling time of the open-
loop system is 25Ts = 25 s. An additive uniform random noise d
acting in the range [−0.1, 0.1] (i.e., d̄ = 0.1) affects the output z
of the system.

Two datasets composed of Nd = 10000 output/regressor data
pairs (y(k + 1), φ̂(k)) are collected from the plant in open-loop,
ith different noise realizations. The input signal is a PRBS in the
ange [−10, 10]. The SNR is equal to 46.6271 dB.

The same considerations and design choices made in Sec-
ion 7.1 for the application of Algorithm 1 hold also in this case.
e obtain the estimate α∗

p = 1.3214. Since the computation
of the vertices turns out to be computationally intensive, we
employ the outer box approximation. The corresponding outer
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Fig. 8. Measured output trajectories obtained with M10 . Black dashed line:
eference closed-loop trajectory; red line: EI-VRFT using Algorithm 3 and outer
ox; blue line: EI-VRFT using Algorithm 4. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this
rticle.)

Fig. 9. Input trajectories obtained with M10 . Red line: EI-VRFT using Algorithm
3 and outer box; blue line: EI-VRFT using Algorithm 4. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

box approximation of the set Θ(α∗
p ) has 22n

= 16384 vertices.
ote that the nominal parameter vector θ o

∈ Θ(α∗
p ).

We consider the reference model M10 defined in Section 7.1,
hose settling time is 10Ts = 10 s.
We select c = 10−3 and W (q) = 1, while Z(q) is esti-

ated from the output signal of one experiment through the
dentification of an AR model of order 14.

We consider the control scheme with explicit integral action.
n case of application of Algorithm 3 using the outer box, the
pectral radius of the closed-loop system state matrix is ρ =

.9085, the fitting index FIT (%) = 87.6213, and the computation
time tc = 2766 s. For the application of Algorithm 4, where
dn = 121, we choose a violation parameter ϵ = 0.05 and a
onfidence parameter β = 10−10, leading to N = 4050. To solve
37), we select c = 10−3 and γ = 1. In this case we obtain

= 0.9085, FIT (%) = 90.4228, and the computation time for
olving (37) is tc = 165 s. In Figs. 8 and 9 we show the reference
racking results obtained with reference model M10, in terms of
rajectories of the measured outputs y(k) and of the control inputs
(k), respectively, using Algorithms 3 and 4. In both cases, the

output tracks the reference model output trajectory.

8. Conclusions

In this paper, a novel approach for the design of VRFT-based
ontrollers has been presented. Contrarily to existing methods,
e have provided robust closed-loop stability guarantees. This
as been possible by showing, for the first time, that VRFT design
an be obtained as the solution to LMI optimization problems,
.g., (18)–(19) and (28)–(29). In the latter, also closed-loop stabil-
ty constraints, obtained by applying a probabilistic SM identifi-

ation approach, can be enforced (i.e., (22) and (33), respectively).

10
The developed method has shown to be particularly effective
for the design of controllers for tracking reference signals. Three
simulation case studies have corroborated the effectiveness of the
proposed algorithms showing the potentialities of the method
and significant advantages with respect to the classical VRFT.

Future works include the possibility of integrating the con-
trollers, designed using the proposed method, in the MPC-based
scheme discussed in Piga et al. (2017), in order to cope with
constraints on input and output variables. A further interesting
follow-up theoretical research consists in the application of the
method described here to the nonlinear case, considering notable
classes of nonlinear systems (e.g., recurrent neural networks).
Finally, the proposed approach will be used in experimental cases
to further validate its effectiveness.
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Appendix

Proof of Proposition 1. We consider a sample (δ1, δ2, . . . , δN ) of
N independent random elements from (∆,Pδ), where N fulfills
(9). As a technical assumption, let α ∈ A = [1,M], where M is
an arbitrarily large real number. Note that, in case of no scenario
removal, α∗

0 is the solution of the following scenario program:

min
α∈A

α (42)

subject to α ∈

⋂
i=1,...,N

Aδi .

In (42) we set

Aδi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Aδi,1 if λi > 0
Aδi,2 if λi

= 0 and λ̂i(k) ≤ 0
for all k = 0, . . . ,Nd − 1

Aδi,3 if λi
= 0 and λ̂i(k) > 0

for at least one k = 0, . . . ,Nd − 1

(43)

where
Aδi,1 = {α ∈ A : α ≥ min(maxk=0,...,Nd−1 λ̂i(k)/λi,M)}, Aδi,2 =

A, and Aδi,3 = {M}. Also, in the previous definitions, λ̂i(k) =

|yi(k + 1) − θ iT φ̂i(k)|−d̄ and yi(k+1), φ̂i(k) are the data generated
rom δi according to (10). Finally, λi is defined according to (6)
using yi(k + 1) and φ̂i(k). Note that the cost function is α, i.e., it
is linear. Moreover, A and Aδ , δ ∈ ∆, are convex and closed
sets and the solution to (42) obtained by discarding p scenarios,
denoted with α∗

p , exists and is unique. Without loss of generality,
we assume that α∗

p < M , e.g., through the removal of a sufficient
number p of constraints.

In view of these facts, from the scenario optimization theory
with constraint removal (Campi & Garatti, 2011), if N ≥ 1 fulfills
(9), we can state that, with probability ≥ 1 − β , it holds that
P

{
δ ∈ ∆ : α∗

p /∈ Aδ

}
≤ ϵ. By recalling that δo ∈ ∆, the previous

statement holds also with δ = δo, meaning that P
{
α∗
p /∈ Aδo

}
≤

ϵ. We define λ̂(k) = |y(k + 1) − θ oT φ̂(k)| − d̄. From (43), for
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→ +∞, using the formula of total probability, we have that

P
{
α∗

p /∈ Aδo
}

= P
{
α∗

p /∈ Aδo | λ > 0
}
P

{
λ > 0

}
+

+ P
{
α∗

p /∈ Aδo | λ = 0
}
P

{
λ = 0

}
=

= P
{
∃k = 0, . . . ,Nd − 1 such that λ̂(k) > α∗

pλ

}
≤ ϵ.

n view of this, P{∃k = 0, . . . ,Nd − 1 such that |y(k + 1) − θ oT

φ̂(k)| > α∗
pλ + d̄} ≤ ϵ. This is equivalent to state that P{|y(k + 1)

θ oT φ̂(k)| ≤ α∗
pλ+ d̄ for all k = 0, . . . ,Nd−1} ≥ 1−ϵ. The proof

is concluded by recalling the definition (7) of the FPS, in view of
which |y(k + 1) − θ oT φ̂(k)| ≤ α∗

pλ + d̄ for all k = 0, . . . ,Nd − 1 is
quivalent to state that θ o

∈ Θ(α∗
p ). ■

roof of Theorem 1. The first step of the proof consists of
howing that the optimization problem (18)–(19) under (21) is
quivalent to minimizing a VRFT-based cost function in case the
V approach is used to cope with noise and the data are filtered
y F (q), i.e.,

Nd
VR (K ) =

1
Nd

Nd−1∑
k=0

(
F (q)(u(k) − û1

K (k))
) (

F (q)(u(k) − û2
K (k))

)
. (44)

n (44), ûi
K (k) = fK ȳi(k) + Kxi(k), for i = 1, 2, is the value that

(k) takes in case the controller is active and it is defined using
he available data sequence (u(k), yi(k)) from Eq. (16). Also, we
onsider that, in the VRFT approach, we need to set ȳi(k) =
i(k) = M−1(q)yi(k), being r i(k) the virtual reference sequence.
herefore, we compute u(k)−ûi

K (k) = u(k)−ūi(k)−K (xi(k)−x̄i(k)).
n view of this

Nd
VR (K ) =

1
Nd

(u1
Nd

− x1Nd
K T )T (u2

Nd
− x2Nd

K T ) =

= 1/(2Nd)((u1
Nd

− x1Nd
K T )T (u2

Nd
− x2Nd

K T )+

+ (u2
Nd

− x2Nd
K T )T (u1

Nd
− x1Nd

K T )) =

= const + KQNdK
T

− 2KRNd =

=
1
γ
(γ const + KGK T

− 2KGQ−1
Nd

RNd ),

where const =
1

2Nd

(
(u1

Nd
)Tu2

Nd
+ (u2

Nd
)Tu1

Nd

)
is constant with

espect to the optimization variable K and where G is assigned
ccording to (21). Since constant additive and strictly positive
caling terms do not take any role in the minimization of a cost
unction, minimizing JNd

VR (K ) is equivalent to minimizing

˜Nd
VR (K ) = (K T

− Q−1
Nd

RNd )
TG(K T

− Q−1
Nd

RNd ).

ow we set K = LG−1 and we use L as optimization variable. We
an write

˜Nd
VR (L) = LG−1LT − 2LQ−1

Nd
RNd + RT

Nd
Q−1
Nd

GQ−1
Nd

RNd .

n view of this, the minimization of J̃Nd
VR can also be written

hrough the following optimization problem:

min
L,σ

σ (45)

ubject to

≥ LG−1LT − 2LQ−1
Nd

RNd + RT
Nd
Q−1
Nd

GQ−1
Nd

RNd .

By resorting to the Schur complement, (45) can be recast as
(18)–(19).

As a second step we show that, under the setting (20) and for
Nd → +∞, minimizing the cost function JNd

VR (K ) (44) is equiva-
lent to minimizing the model-reference criterion J (K ) in (17).
MR

11
Asymptotically (Campi et al., 2002), if Nd → +∞, JNd
VR (K ) →

J̄VR(K ), where

J̄VR(K ) = E[(F (q)(u(k) − û1
K (k)))(F (q)(u(k) − û2

K (k)))].

onsidering (16), we can write, for i = 1, 2, ûi
K (k) = fK ȳi(k) +

K (q)yi(k)+ CK (q)u(k), where BK (q) = k1 + k2q−1
+ · · · + knq−n+1,

nd CK (q) = kn+1q−1
+ · · · + k2n−1q−n+1. Consistently with the

RFT approach, ȳi(k) = M−1(q)yi(k). In view of this, we can write,
or i = 1, 2, u(k)−ûi

K (k) = (1−CK (q))u(k)−(BK (q)+fKM−1(q))yi(k).
rom (1), for i = 1, 2, yi(k) = P(q)u(k) + di(k), being P(q) the
nknown transfer function between u and z. Therefore we can
rite, for brevity, that u(k)− ûi

K (k) = Q (q)u(k)+ R(q)di(k), where
(q) = 1− CK (q)− (BK (q)+ fKM−1(q))P(q) and R(q) = −(BK (q)+

KM−1(q)). This implies that

¯VR(K ) = E[(F (q)Q (q)u(k) + F (q)R(q)d1(k))
(F (q)Q (q)u(k) + F (q)R(q)d2(k))].

n view of Assumption 3, we can write

¯VR(K ) = E[(F (q)Q (q)u(k))2].

rom (16) we can compute MK (q), i.e., the real closed-loop trans-
er function between ȳ(k) and y(k):

K (q) =
fKP(q)

1 − CK (q) − BK (q)P(q)
.

e can therefore rewrite Q (q)u(k) = (1 − CK (q) − BK (q)P(q) −

KP(q)M−1(q))u(k) = fK (M−1
K (q) − M−1(q))P(q)u(k) =

K
M(q)−MK (q)
MK (q)M(q) z(k).
Using the Parseval theorem, by dropping the argument ejω , we

btain that

¯VR(K ) =
1
2π

∫ π

−π

|fK |
2 |M − MK |

2

|M|
2
|MK |

2 |F |
2Φz dω . (46)

Using the definition of 2-norm of a discrete-time linear transfer
function, it is possible to write (17) as

JMR(K ) =
1
2π

∫ π

−π

|M − MK |
2
|W |

2 dω . (47)

t is now possible to see that (47) is equivalent to (46) if (20) is
sed.
Finally, we address the stability claim. Since the stability prop-

rties of the linear system do not depend upon the exogenous
ignal w(k) in (11) and the reference signal ȳ(k), we discard them
ere by setting w(k) = 0 and ȳ(k) = 0. By considering (11) and
16), the control system dynamics is described by

(k + 1) = (A + BK )x(k). (48)

ecalling (13), the uncertain system (48) is robustly stable for
ll θ ∈ Θ(α∗

p ) with gain K = LG−1, according to Theorem
in De Oliveira et al. (1999) (considering a single uncertainty
omain for the matrices A and B), if there exist matrices Pi, G,
nd L such that (22) holds for all i = 1, . . . , nV . Therefore, K
tabilizes all the systems (11) with θ ∈ Θ(α∗

p ). This concludes
he proof. ■

roof of Theorem 2. The proof of Theorem 2 follows the same
teps of the proof of Theorem 1. Hence, we here recall only
he main differences. The full proof is available in D’Amico and
arina (2022b). In particular, in JNd

VR (K , g) the optimal predictor
ˆ iK ,g (k) = gei(k)+D(q)BK (q)yi(k)+(1−D(q)(1−CK (q)))u(k) is used
n place of ûi

K (k), where BK (q) and CK (q) are defined in the proof
f Theorem 1. By setting ei(k) = ẽi(k), being ẽi(k) the virtual error
equence, we have that u(k) − ûi

K ,g (k) = D(q)u(k) − D(q)Kxi(k) −

ẽi(k). As before, we can show that JNd (K , g) can be recast as
VR
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28)–(29). With the same arguments, it is also possible to show
hat JMR(K , g) =

1
2π

∫ π

−π
|M − MK ,g |

2
|W |

2 dω is equivalent to
¯VR(K , g) =

1
2π

∫ π

−π
|g|

2 |M−MK ,g |
2

|M|2|MK ,g |2
|F |

2Φz dω if (30) is used, where

K ,g (q) =
g P(q)
D(q)

1+g P(q)
D(q) −CK (q)−BK (q)P(q)

.

For what concern the stability claim, we set w(k) = 0 and
¯(k) = 0 so that e(k) = −y(k). By considering (11) and (26)
t the same time, the state of the control system is ζ (k) =

x(k)T η(k)
]T , whose dynamics is described by ζ (k + 1) =

CLζ (k), where ACL =

[
A + BK − gBC gB

−C 1

]
. Note that we can

rite ACL = A+BJ where, from (13),
[
A B

]
=

∑nV
i=1 γi

[
Ai Bi

]
,

nd J =
[
K − gC g

]
takes the role of the control gain. The

tability claim follows straightforwardly from the application of
heorem 3 in De Oliveira et al. (1999), by considering a single
ncertainty domain for the matrices A and B. Note that, as a
olution to the LMI (33), the stabilizing gain is J = LG−1. Note
lso that

[
K g

]
= JE−1, and then we obtain (32). ■

roof of Corollary 1. Let us define with x ∈ X ⊆ Rdn a vector
ontaining all the optimization variables of (37), i.e., all the free
lements of L and P , σ , and λg , where dn = 2+2n+

∑2n
j=1 j = 2n2

+

n + 2. As a technical assumption, let X be an arbitrarily large
losed set. We also assume that, if (37) is feasible, the solution is
nique. This assumption can be released using a tie-break rule as
n Campi and Garatti (2008) or Calafiore and Campi (2006). We
an write the following scenario program:

min
x∈X

cT x (49)

ubject to x ∈

⋂
i=1,...,N

Xθ i ,

hose solution is denoted with x∗

N . In (49) we set cT x = σ + cλg ,
nd Xθ i ⊆ X is defined by the LMI constraints (29) and (34) (using
in place of G), and

P AiP + BiL
(AiP + BiL)T P

]
≻ 0.

ote that Xθ i are convex and closed sets. From standard ar-
uments (Calafiore & Campi, 2006), if the problem is feasible
nd N fulfills (36), with probability ≥ 1 − β , it holds that{

θ ∈ Θ(α∗
p ) : x∗

N /∈ Xθ

}
≤ ϵ. This concludes the proof since

{θ ∈ Θ(α∗
p ) : the closed-loop system is asymptotically

table} ≥ P
{
θ ∈ Θ(α∗

p ) : x∗

N ∈ Xθ

}
≥ 1 − ϵ. ■
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