83 research outputs found

    SU(3)cSU(3)LU(1)XSU(3)_c\otimes SU(3)_L\otimes U(1)_X models with four families

    Get PDF
    In the context of the local gauge group SU(3)cSU(3)LU(1)XSU(3)_c\otimes SU(3)_L\otimes U(1)_X, we look for possible four family models, where all the particles carry ordinary electric charges. Thirteen different anomaly-free fermion structures emerge, out of which only two are realistic. For the simplest physical structure, we calculate the charged and neutral weak currents and the tree-level Fermion masses. We also look for new sources of flavor changing neutral currents in the quark sector, in connection with the upcoming experimental results at the Large Hadron Collider.Comment: Accepted for publication in Phys. Rev.

    Extension of the Chiral Perturbation Theory Meson Lagrangian to Order P6P^6

    Full text link
    We have derived the most general chirally invariant Lagrangian L6{\cal L}_6 for the meson sector at order p6p^6. The result provides an extension of the standard Gasser-Leutwyler Lagrangian L4{\cal L}_4 to one higher order, including as well all the odd intrinsic parity terms in the Lagrangian. The most difficult part of the derivation was developing a systematic strategy so as to get all of the independent terms and eliminate the redundant ones in an efficient way. The 'equation of motion' terms, which are redundant in the sense that they can be transformed away via field transformations, are separated out explicitly. The resulting Lagrangian has been separated into groupings of terms contributing to increasingly more complicated processes, so that one does not have to deal with the full result when calculating p6p^6 contributions to simple processes.Comment: 59 pages in LaTex, using RevTex macro, TRIUMF preprint TRI-PP-94-6

    Flavor changing neutral currents with a fourth family of quarks

    Get PDF
    For a model with a fourth family of quarks, new sources of flavor changing neutral currents are identified by confronting the unitary 4x4 quark mixing matrix with the experimental measured values of the familiar 3x3 quark mixing matrix. By imposing as experimental constraints the known bounds for the flavor changing neutral currents, the largest mixing of the known quarks with the fourth family ones is established. The predictions are: a value for |V_{tb}| significantly different from unity, large rates for rare top decays as t->c\gamma and t->cZ, the last one reachable at the Large Hadrion Collider, and large rates for rare strange decays s->d\gamma and s->dg, where g stands for the gluon field.Comment: 7 pages, one figure. Published on Physical Review

    Stability of the Scalar Potential and Symmetry Breaking in the Economical 3-3-1 Model

    Get PDF
    A detailed study of the criteria for stability of the scalar potential and the proper electroweak symmetry breaking pattern in the economical 3-3-1 model, is presented. For the analysis we use, and improve, a method previously developed to study the scalar potential in the two-Higgs-doublet extension of the standard model. A new theorem related to the stability of the potential is stated. As a consequence of this study, the consistency of the economical 3-3-1 model emerges.Comment: to be published in EPJ C, 13 page

    The Dawn of Open Access to Phylogenetic Data

    Get PDF
    The scientific enterprise depends critically on the preservation of and open access to published data. This basic tenet applies acutely to phylogenies (estimates of evolutionary relationships among species). Increasingly, phylogenies are estimated from increasingly large, genome-scale datasets using increasingly complex statistical methods that require increasing levels of expertise and computational investment. Moreover, the resulting phylogenetic data provide an explicit historical perspective that critically informs research in a vast and growing number of scientific disciplines. One such use is the study of changes in rates of lineage diversification (speciation - extinction) through time. As part of a meta-analysis in this area, we sought to collect phylogenetic data (comprising nucleotide sequence alignment and tree files) from 217 studies published in 46 journals over a 13-year period. We document our attempts to procure those data (from online archives and by direct request to corresponding authors), and report results of analyses (using Bayesian logistic regression) to assess the impact of various factors on the success of our efforts. Overall, complete phylogenetic data for ~60% of these studies are effectively lost to science. Our study indicates that phylogenetic data are more likely to be deposited in online archives and/or shared upon request when: (1) the publishing journal has a strong data-sharing policy; (2) the publishing journal has a higher impact factor, and; (3) the data are requested from faculty rather than students. Although the situation appears dire, our analyses suggest that it is far from hopeless: recent initiatives by the scientific community -- including policy changes by journals and funding agencies -- are improving the state of affairs

    The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    Get PDF
    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions

    Hierarchical Spherical Model from a Geometric Point of View

    Full text link
    A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distribution of the block spin variable X^{\gamma}, normalized with exponents \gamma =d+2 and \gamma =d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L^{d} in the limit L to 1 and N to \infty . Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee--Yang zeroes. The large--NN limit of RG transformation with L^{d} fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe \cite{W}. Although our analysis deals only with N=\infty case, it complements various aspects of that work.Comment: 27 pages, 6 figures, submitted to Journ. Stat. Phy

    Texture zeros for the standard model Quark mass matrices

    Get PDF
    ABSTRACT: A way of counting free parameters in the quark mass matrices of the standard model, including the constraints coming from weak basis transformations, is presented; this allow to understand the exact physical meaning of the parallel and non-parallel texture zeros which appear in some “ans¨atz” of the 3 × 3 quark mass matrices, including the CP violation phenomena in the analysis, it is shown why the six texture zeros are ruled out. Finally, a five texture zeros “ans¨atze”which properly copes with all experimental constrains, including the angles of the unitary triangle, is presented

    Single-neuron dynamics in human focal epilepsy

    Get PDF
    Epileptic seizures are traditionally characterized as the ultimate expression of monolithic, hypersynchronous neuronal activity arising from unbalanced runaway excitation. Here we report the first examination of spike train patterns in large ensembles of single neurons during seizures in persons with epilepsy. Contrary to the traditional view, neuronal spiking activity during seizure initiation and spread was highly heterogeneous, not hypersynchronous, suggesting complex interactions among different neuronal groups even at the spatial scale of small cortical patches. In contrast to earlier stages, seizure termination is a nearly homogenous phenomenon followed by an almost complete cessation of spiking across recorded neuronal ensembles. Notably, even neurons outside the region of seizure onset showed significant changes in activity minutes before the seizure. These findings suggest a revision of current thinking about seizure mechanisms and point to the possibility of seizure prevention based on spiking activity in neocortical neurons
    corecore