9 research outputs found

    Uncoupling Caveolae from Intracellular Signaling in Vivo

    Get PDF
    © 2016 Nature America, Inc. Rationale: Caveolin-1 (Cav-1) negatively regulates endothelial nitric oxide (NO) synthase-derived NO production, and this has been mapped to several residues on Cav-1, including F92. Herein, we reasoned that endothelial expression of an F92ACav-1 transgene would let us decipher the mechanisms and relationships between caveolae structure and intracellular signaling. Objective: This study was designed to separate caveolae formation from its downstream signaling effects. Methods and Results: An endothelial-specific doxycycline-regulated mouse model for the expression of Cav-1-F92A was developed. Blood pressure by telemetry and nitric oxide bioavailability by electron paramagnetic resonance and phosphorylation of vasodilator-stimulated phosphoprotein were determined. Caveolae integrity in the presence of Cav-1-F92A was measured by stabilization of caveolin-2, sucrose gradient, and electron microscopy. Histological analysis of heart and lung, echocardiography, and signaling were performed. Conclusions: This study shows that mutant Cav-1-F92A forms caveolae structures similar to WT but leads to increases in NO bioavailability in vivo, thereby demonstrating that caveolae formation and downstream signaling events occur through independent mechanisms

    Endothelial Cell Autonomous Role of Akt1

    Get PDF
    © 2018 American Heart Association, Inc. Objective - The importance of PI3K/Akt signaling in the vasculature has been demonstrated in several models, as global loss of Akt1 results in impaired postnatal ischemia- and VEGF-induced angiogenesis. The ubiquitous expression of Akt1, however, raises the possibility of cell-type-dependent Akt1-driven actions, thereby necessitating tissue-specific characterization. Approach and Results - Herein, we used an inducible, endothelial-specific Akt1-deleted adult mouse model (Akt1iECKO) to characterize the endothelial cell autonomous functions of Akt1 in the vascular system. Endothelial-targeted ablation of Akt1 reduces eNOS (endothelial nitric oxide synthase) phosphorylation and promotes both increased vascular contractility in isolated vessels and elevated diastolic blood pressures throughout the diurnal cycle in vivo. Furthermore, Akt1iECKO mice subject to the hindlimb ischemia model display impaired blood flow and decreased arteriogenesis. Conclusions - Endothelial Akt1 signaling is necessary for ischemic resolution post-injury and likely reflects the consequence of NO insufficiency critical for vascular repair

    Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.

    Get PDF
    In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E.R. and EP/G037221/1, nanoDTC, to D.M.), the UK Biology and Biotechnological Sciences Research Council (BB/K002627/1 to A.W.R. and BB/K010220/1 to E.R.), a Marie Curie Intra-European Fellowship (PIEF-GA-2013-625034 to C.Y.L), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z) and the CEA and the CNRS (to J.C.F.C.). A.W.R. holds a Wolfson Merit Award from the Royal Society.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/jacs.5b0373

    Reducing non-monotonicities in combat models

    Get PDF
    Non-monotonic behavior in combat models is an important topic to those using the output of such models as a basis for decision making. These decisions can be complicated by non-monotonic behavior in the combat models. This paper examines the Dewar model which exhibits non- monotonic behavior caused by the chaos inherent in its structure. Previous papers have examined only small subsets of this 18 dimensional combat model. The combinatorial possibilities of main effects and interactions among the 18 dimensions are too great to examine en masse. Consequently, we have three goals. First, systematically explore the Dewar model for additional non-monotonic behavior. Second, determine the effect of stochastic modeling on the non-monotonic behavior of the Dewar model response surface. Third, we develop a method for measuring non- monotonicity in the response surface generated by the model. Latin Hypercube Sampling discovers non-monotonicity across broad regions of the model's phase space, and in multiple measures of effectiveness. Stochastic perturbation of model parameters has a dramatic effect on the non-monotonicity of the response surface. Stochastic perturbation can both reduce and exacerbate the non-monotonic behavior of the response surface. If done properly, stochastic modeling can significantly improve the interpretability of the response surface.http://archive.org/details/reducingnonmonot109451838US Marine Corps (USMC) autho

    4. TITLE AND SUBTITLE: Title (Mix case letters) Reducing Non-Monotonicities In Combat Models

    No full text
    Approved for public release; distribution is unlimitedREPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washingto

    Uncoupling Caveolae From Intracellular Signaling In Vivo

    No full text
    RATIONALE: Caveolin-1 negatively regulates eNOS derived NO production and this has been mapped to several residues on Cav-1 including F92. Herein, we reasoned that endothelial expression of an F92ACav-1 transgene would let us decipher the mechanisms and relationships between caveolae structure and intracellular signaling. OBJECTIVE: This study was designed to separate caveolae formation from its downstream signaling effects. METHODS AND RESULTS: An endothelial-specific doxycycline-regulated mouse model for the expression of Cav-1-F92A was developed. Blood pressure by telemetry and nitric oxide bioavailability by electron paramagnetic resonance and phosphorylation of VASP were determined. Caveolae integrity in the presence of Cav-1-F92A was measured by stabilization of Cav-2, sucrose gradient and electron microscopy. Histological analysis of heart and lung, echocardiography and signaling were performed. CONCLUSIONS: This study shows that mutant Cav-1-F92A forms caveolae structures similar to WT but leads to increases in NO bioavailability in vivo thereby demonstrating that caveolae formation and downstream signaling events occur through independent mechanisms

    Oxidized and reduced [2Fe–2S] clusters from an iron(I) synthon

    No full text
    Synthetic [2Fe-2S] clusters are often used to elucidate ligand effects on the reduction potentials and spectroscopy of natural electron transfer sites, which can have anionic Cys ligands or neutral His ligands. Current synthetic routes to [2Fe-2S] clusters are limited in their feasibility with a range of supporting ligands. Here we report a new synthetic route to synthetic [2Fe-2S] clusters, through oxidation of an iron(I) source with elemental sulfur. This method yields a neutral diketiminate-supported [2Fe-2S] cluster in the diiron(III) oxidized form. The oxidized [2Fe-2S] cluster can be reduced to a mixed valent iron(II)-iron(III) compound. Both the diferric and reduced mixed valent clusters are characterized using X-ray crystallography, Mössbauer spectroscopy, EPR spectroscopy and cyclic voltammetry. The reduced compound is particularly interesting because its X-ray crystal structure shows a difference in Fe-S bond lengths to one of the iron atoms, consistent with valence localization. The valence localization is also evident from Mössbauer spectroscopy

    A physiognomic classification of vegetation in conterminous United States

    No full text
    corecore