849 research outputs found

    Long-range energy-state maneuvers for minimum time to specified terminal conditions.

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76474/1/AIAA-1973-229-104.pd

    An fMRI investigation of the neural correlates underlying the autonomous sensory meridian response (ASMR)

    Get PDF
    Introduction: The "autonomous sensory meridian response" (ASMR) is a neologism used to describe an internal sensation of deep relaxation and pleasant head tingling which is often stimulated by gentle sounds, light touch, and personal attention. Methods: An fMRI-based methodology was employed to examine the brain activation of subjects prescreened for ASMR-receptivity (n=10) as they watched ASMR videos and identified specific moments of relaxation and tingling. Results: Subjects who experienced ASMR showed significant activation in regions associated with both reward (NAcc) and emotional arousal (dACC and Insula/IFG). Brain activation during ASMR showed similarities to patterns previously observed in musical frisson as well as affiliative behaviors. Conclusion: This is the first study to measure the activation of various brain regions during ASMR and these results may help to reveal the mechanistic underpinnings of this sensation

    Transit Timing Observations from Kepler: VI. Potentially interesting candidate systems from Fourier-based statistical tests

    Get PDF
    We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through Quarter six (Q6) of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.Comment: 32 pages, 6 of text and one long table, Accepted to Ap

    Modeling Kepler transit light curves as false positives: Rejection of blend scenarios for Kepler-9, and validation of Kepler-9d, a super-Earth-size planet in a multiple system

    Get PDF
    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive, we describe a procedure (BLENDER) to model the photometry in terms of a "blend" rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9, a target harboring two previously confirmed Saturn-size planets (Kepler-9b and Kepler-9c) showing transit timing variations, and an additional shallower signal with a 1.59-day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals, and provide independent validation of their planetary nature. For the shallower signal we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9d) in a multiple system, rather than a false positive. The radius is determined to be 1.64 (+0.19/-0.14) R(Earth), and current spectroscopic observations are as yet insufficient to establish its mass.Comment: 20 pages in emulateapj format, including 8 tables and 16 figures. To appear in ApJ, 1 January 2010. Accepted versio

    A First Comparison of Kepler Planet Candidates in Single and Multiple Systems

    Get PDF
    In this letter we present an overview of the rich population of systems with multiple candidate transiting planets found in the first four months of Kepler data. The census of multiples includes 115 targets that show 2 candidate planets, 45 with 3, 8 with 4, and 1 each with 5 and 6, for a total of 170 systems with 408 candidates. When compared to the 827 systems with only one candidate, the multiples account for 17 percent of the total number of systems, and a third of all the planet candidates. We compare the characteristics of candidates found in multiples with those found in singles. False positives due to eclipsing binaries are much less common for the multiples, as expected. Singles and multiples are both dominated by planets smaller than Neptune; 69 +2/-3 percent for singles and 86 +2/-5 percent for multiples. This result, that systems with multiple transiting planets are less likely to include a transiting giant planet, suggests that close-in giant planets tend to disrupt the orbital inclinations of small planets in flat systems, or maybe even to prevent the formation of such systems in the first place.Comment: 13 pages, 13 figures, submitted to ApJ Letter

    Transit Timing Observations from Kepler: VII. Confirmation of 27 planets in 13 multiplanet systems via Transit Timing Variations and orbital stability

    Full text link
    We confirm 27 planets in 13 planetary systems by showing the existence of statistically significant anti-correlated transit timing variations (TTVs), which demonstrates that the planet candidates are in the same system, and long-term dynamical stability, which places limits on the masses of the candidates---showing that they are planetary. %This overall method of planet confirmation was first applied to \kepler systems 23 through 32. All of these newly confirmed planetary systems have orbital periods that place them near first-order mean motion resonances (MMRs), including 6 systems near the 2:1 MMR, 5 near 3:2, and one each near 4:3, 5:4, and 6:5. In addition, several unconfirmed planet candidates exist in some systems (that cannot be confirmed with this method at this time). A few of these candidates would also be near first order MMRs with either the confirmed planets or with other candidates. One system of particular interest, Kepler-56 (KOI-1241), is a pair of planets orbiting a 12th magnitude, giant star with radius over three times that of the Sun and effective temperature of 4900 K---among the largest stars known to host a transiting exoplanetary system.Comment: 12 pages, 13 figures, 5 tables. Submitted to MNRA

    Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates

    Get PDF
    We present the discovery of the Kepler-20 planetary system, which we initially identified through the detection of five distinct periodic transit signals in the Kepler light curve of the host star 2MASSJ19104752+4220194. We find a stellar effective temperature Teff=5455+-100K, a metallicity of [Fe/H]=0.01+-0.04, and a surface gravity of log(g)=4.4+-0.1. Combined with an estimate of the stellar density from the transit light curves we deduce a stellar mass of Mstar=0.912+-0.034 Msun and a stellar radius of Rstar=0.944^{+0.060}_{-0.095} Rsun. For three of the transit signals, our results strongly disfavor the possibility that these result from astrophysical false positives. We conclude that the planetary scenario is more likely than that of an astrophysical false positive by a factor of 2e5 (Kepler-20b), 1e5 (Kepler-20c), and 1.1e3 (Kepler-20d), sufficient to validate these objects as planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is independently disfavored by the achromaticity of the transit: From Spitzer data gathered at 4.5um, we infer a ratio of the planetary to stellar radii of 0.075+-0.015 (Kepler-20c) and 0.065+-0.011 (Kepler-20d), consistent with each of the depths measured in the Kepler optical bandpass. We determine the orbital periods and physical radii of the three confirmed planets to be 3.70d and 1.91^{+0.12}_{-0.21} Rearth for Kepler-20b, 10.85 d and 3.07^{+0.20}_{-0.31} Rearth for Kepelr-20c, and 77.61 d and 2.75^{+0.17}_{-0.30} Rearth for Kepler-20d. From multi-epoch radial velocities, we determine the masses of Kepler-20b and Kepler-20c to be 8.7\+-2.2 Mearth and 16.1+-3.5 Mearth, respectively, and we place an upper limit on the mass of Kepler-20d of 20.1 Mearth (2 sigma).Comment: accepted by ApJ, 58 pages, 12 figures revised Jan 2012 to correct table 2 and clarify planet parameter extractio
    • …
    corecore