7,285 research outputs found
Direct spatial-temporal discrimination of modes in a photonic lightwave circuit using photon scanning tunnelling microscopy
Multi-mode photonic lightwave circuits (PLCs) provide new avenues for extending the performance of single mode systems. As an example, they can potentially provide increased bandwidth by multiplexing information into different waveguide modes[1]. For practical applications of multi-mode PLCs to be developed, a measurement technique is required to investigate detailed mode profiles and propagation constants in complex circuits. Photon scanning tunnelling microscopy (PSTM) provides a means of experimentally tracking the femtosecond inter-modal delays observed in PLCs with the ability to discriminate modes by their spatial profiles inside the waveguide
Extraordinary and Compelling: a Re-examination of the Justifications for Compassionate Release
More Different than Life, Less Different than Death: The Argument for According Life Without Parole Its Own Category of Heightened Review Under the Eighth Amendment After Graham v. Florida
Life-With-Hope Sentencing: The Argument for Replacing Life-Without-Parole Sentences with Presumptive Life Sentences
Following the Yellow Brick Road of Evolving Standards of Decency: The Ironic Consequences of Death-is-Different Jurisprudence
An information theoretic approach to the functional classification of neurons
A population of neurons typically exhibits a broad diversity of responses to
sensory inputs. The intuitive notion of functional classification is that cells
can be clustered so that most of the diversity is captured in the identity of
the clusters rather than by individuals within clusters. We show how this
intuition can be made precise using information theory, without any need to
introduce a metric on the space of stimuli or responses. Applied to the retinal
ganglion cells of the salamander, this approach recovers classical results, but
also provides clear evidence for subclasses beyond those identified previously.
Further, we find that each of the ganglion cells is functionally unique, and
that even within the same subclass only a few spikes are needed to reliably
distinguish between cells.Comment: 13 pages, 4 figures. To appear in Advances in Neural Information
Processing Systems (NIPS) 1
Searching for collective behavior in a network of real neurons
Maximum entropy models are the least structured probability distributions
that exactly reproduce a chosen set of statistics measured in an interacting
network. Here we use this principle to construct probabilistic models which
describe the correlated spiking activity of populations of up to 120 neurons in
the salamander retina as it responds to natural movies. Already in groups as
small as 10 neurons, interactions between spikes can no longer be regarded as
small perturbations in an otherwise independent system; for 40 or more neurons
pairwise interactions need to be supplemented by a global interaction that
controls the distribution of synchrony in the population. Here we show that
such "K-pairwise" models--being systematic extensions of the previously used
pairwise Ising models--provide an excellent account of the data. We explore the
properties of the neural vocabulary by: 1) estimating its entropy, which
constrains the population's capacity to represent visual information; 2)
classifying activity patterns into a small set of metastable collective modes;
3) showing that the neural codeword ensembles are extremely inhomogenous; 4)
demonstrating that the state of individual neurons is highly predictable from
the rest of the population, allowing the capacity for error correction.Comment: 24 pages, 19 figure
- …
