7,285 research outputs found

    Direct spatial-temporal discrimination of modes in a photonic lightwave circuit using photon scanning tunnelling microscopy

    No full text
    Multi-mode photonic lightwave circuits (PLCs) provide new avenues for extending the performance of single mode systems. As an example, they can potentially provide increased bandwidth by multiplexing information into different waveguide modes[1]. For practical applications of multi-mode PLCs to be developed, a measurement technique is required to investigate detailed mode profiles and propagation constants in complex circuits. Photon scanning tunnelling microscopy (PSTM) provides a means of experimentally tracking the femtosecond inter-modal delays observed in PLCs with the ability to discriminate modes by their spatial profiles inside the waveguide

    Writing (And Re-Writing) Federal Criminal Law- in the Classroom

    Get PDF

    An information theoretic approach to the functional classification of neurons

    Get PDF
    A population of neurons typically exhibits a broad diversity of responses to sensory inputs. The intuitive notion of functional classification is that cells can be clustered so that most of the diversity is captured in the identity of the clusters rather than by individuals within clusters. We show how this intuition can be made precise using information theory, without any need to introduce a metric on the space of stimuli or responses. Applied to the retinal ganglion cells of the salamander, this approach recovers classical results, but also provides clear evidence for subclasses beyond those identified previously. Further, we find that each of the ganglion cells is functionally unique, and that even within the same subclass only a few spikes are needed to reliably distinguish between cells.Comment: 13 pages, 4 figures. To appear in Advances in Neural Information Processing Systems (NIPS) 1

    Searching for collective behavior in a network of real neurons

    Get PDF
    Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such "K-pairwise" models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the population's capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.Comment: 24 pages, 19 figure
    corecore